ScifForce
Journal of Data Science and Information Technology

Journal homepage: www.sciforce.org
ISSN : 2998-3592

Open Access Review Article

Ada Boost Regression-Based Modelling of Heap Behaviour for
Predictable Performance in Java Applications

Tirumala Rao Gundala*

Consulting Technical Manager & Performance Architect, Oracle, United States

Abstract

This research addresses the critical challenge in modelling heap behaviour for predictable performance in Java applications using
machine learning approaches. Since heap memory management significantly impacts application responsiveness and performance,
understanding the complex relationships between heap load, garbage collection pause times, throughput, and memory usage
becomes essential for optimization. Through extensive statistical analysis, this study establishes strong correlations between
parameters and employs Ada Boost Regression to predict three key performance metrics across 100 observations. This method
demonstrates exceptional predictive accuracy, achieving R? values of 0.987, 0.955, and 0.977 for GC pause time, throughput,
and memory usage respectively on the training data, with robust generalization to the test data (R? values of 0.956, 0.880, and
0.937). The results reveal near-perfect positive correlations between heap load, GC pause times, and memory usage, while
throughput exhibits a strong negative correlation, illustrating the fundamental JVM memory management trade-offs. This research
provides practitioners with a reliable predictive tool for ensuring stable operations in production environments where performance
optimization, capacity planning, and efficient memory management are paramount.

Keywords: Heap memory management, AdaBoost regression, Garbage collection process optimization, Java Virtual Machine

performance, Predictive performance modelling, Machine learning, Performance prediction

Introduction

Accurate modelling of heap evolution is crucial for optimization
and verification tasks, yet previous methods generally fall short
in either accuracy or efficiency, limiting their applicability in
practice and hindering progress in several research areas. This
work presents a general heap analysis approach that aims to
provide comprehensive heap insights for real-world programs
while remaining computationally feasible. By leveraging targeted
design heuristics, it maintains speed and accuracy on typical code
patterns, selectively relaxing accuracy in rare cases to improve
overall performance. This technique fully supports essential Java
language features and reliably generates precise information
suitable for various optimization applications [1]. This research
proposes a parametric technique for estimating the heap memory
usage of imperative programs such as Java. This approach prevents
potential memory exhaustion errors by calculating symbolic
polynomial approximations of the dynamic memory required for
the safe execution of a method.This technique accounts for both
object allocations and data transfers occurring within the main

Received date: November 03, 2025 Accepted date: November 25,
2025; Published date: December 05, 2025

*Corresponding Author: Gundala, Tirumala Rao, Consulting Technical Manager &
Performance Architect, Oracle, United States; E- mail: Tirumalagundala7@gmail.
com

Copyright: © 2025 Gundala, Tirumala Rao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

function and its nested calls. By employing constrained memory
management, it optimizes peak memory usage by organizing
objects into regions that align with the functions execution
timeline.

The underlying challenge is formulated as a parameter-
dependent polynomial optimization problem, which is then
solved using the Bernstein basis method. The resulting tool has
been evaluated and used in several benchmark programs [2].
Dynamic memory allocation plays a crucial role in modern
object-oriented software. However, as processor speeds have
grown faster than memory access times, and as applications grow
in size and memory requirements, physical memory performance
has become increasingly critical. Without this, the slow nature
of memory compared to processing would increasingly degrade
program performance. This research paper explores the use of
profile-driven optimization to predict the reference and lifetime
patterns of heap objects. The goal is to improve spatial locality and
reduce page faults, thereby enhancing performance, especially in
memory-constrained environments [3]. Based on the complexity
of the problem, we propose a framework for modelling and
predicting the execution time of scientific applications written in
Java.

The primary objective of this research is to achieve an efficient
workload balance for distributed Java applications running in a
grid computing environment. We introduce a distinction between
predictable and unpredictable processing points within Java
applications and explain our methodology in detail for modelling
and predicting program performance [4]. The Real-Time Java
Expert Group has developed a specification to extend the benefits of
Java, particularly its developer-friendly features, to the field of real-
time systems. These benefits are especially crucial for distributed

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data Science

and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

Sciforce

real-time systems, where software development has traditionally
been considered complex, labour-intensive, and prone to errors
[5]. Java is increasingly becoming the preferred language for
software development in various embedded environments. The use
of Java’s micro editions for creating embedded software solutions is
a prime example of this trend [6]. In recent years, Java has emerged
as a robust and well-established platform. Its inherent portability
has cemented its popularity for enterprise-level applications and
for implementing standard components such as middleware and
business logic [7]. Determining the varying parameters proved
to be significantly more challenging than initially anticipated.
To address this, we developed a dedicated framework within the
Java programs for this study to calculate these parameters [8].
Each implementation is designed to meet specific performance
requirements, leading to unique design trade-offs. For example,
Java’s Array List uses less memory than Linked List, but incurs a
higher asymptotic cost for inserting or deleting elements at any
position in the list [9]. The purpose of this article is to analyse the
memory characteristics of key Java benchmarks used for evaluating
JVMs and JIT compilers. It aims to provide structured, multi-
level insights into these workloads to assist computer architects
and JVM component developers in their design processes [10].
Mechanisms such as automatic garbage collection and dynamic
class loading are often considered problematic in time-sensitive
or performance-critical environments. Additionally, since the
introduction of the Java Virtual Machine, a significant number of
security vulnerabilities have been discovered in byte code verifiers
and just-in-time compilers.

All these issues combined make Java and its related technologies
unsuitable for high-reliability systems [11]. It has been proven
that the performance characteristics of Java applications differ
significantly from the performance of general-purpose tasks. This
necessitates an in-depth study of Java-specific functionalities at
the microarchitecture level. Conducting performance analyses
of Java tasks in real-world environments supports optimization
efforts and reveals critical issues that need to be considered in the
design and development of future systems designed to run Java
[12]. This automation is facilitated by garbage collection, which
is a background process that reclaims memory from objects
that are no longer in use. Integrating garbage collection into the
Java HotSpot Virtual Machine represents a major advancement,
greatly simplifying development for large-scale applications and
improving runtime stability [13]. The platform examined in this
study is Oracle Web Logic Server, a leading Java EE application
server in the market. Our method for extracting its model relies on
performance monitoring data collected using industry-standard
business monitoring tools designed for this platform [15].

Materials and Method

Heap Load: Heap leaching, in the mining industry, refers to
the process of loading ore onto a heap leaching pad. Typically,
crushed and agglomerated processed ore is systematically stacked
in layers using heavy equipment such as conveyors or trucks. This
planned stacking creates a permeable, uniform heap, allowing the
leaching solution to penetrate evenly for optimal metal recovery.
This method is crucial to the efficiency of heap leaching processes
used to extract metals such as gold, copper, and uranium.

GC Pause Time (ms): GC pause time is the total duration, in
milliseconds, during which all application threads are stopped
during a garbage collection (GC) event in managed memory
environments such as the JVM or .NET CLR. This “stop-the-

Citation:

© Gundala, et al.

world” pause allows the collector to safely reclaim unused memory
without interference from the running program threads. This is
a critical performance metric, as excessive pause times directly
impact application responsiveness, latency, and throughput,
making its reduction a key objective in GC tuning.

Throughput ops (per sec): Throughput (operations/second)
is a key performance metric that measures the total number of
operations a system can successfully complete per second. It
quantifies overall work capacity and efficiency. In contexts such
as databases, APIs, or servers, an ‘operation’ is a defined unit of
work, such as a transaction, query, or request. Higher throughput
indicates robust processing capability under heavy workloads, but
to fully assess system performance and user experience, it must be
balanced with other metrics such as latency and error rates.

Memory Utilization percent: Memory usage (percentage)
measures the ratio of the total physical or virtual RAM currently
in use by processes and the operating system on a system. It is a
key health metric indicating how much memory is available for
new tasks. High usage can indicate efficient resource utilization,
but when sustained near 100%, it often leads to performance
degradation. This occurs because the system increasingly relies
on slower disk-based swapping, causing bottlenecks. Monitoring
this percentage is crucial for capacity planning, preventing out-of-
memory errors, and ensuring application stability.

Instructions for machine learning

Ada Boost Regression: Boosting is a very effective and widely
used technique in supervised learning, which works by successively
combining a series of simple, weak models to form a single, highly
accurate predictive model. This process operates in a greedy
manner, with every new student concentrating on the mistakes
made by their predecessors. Although its initial conception was
for classification, the method has proven to be remarkably versatile
across a variety of problem types. A significant and fascinating area
of research in this field involves systematically combining boosting
algorithms, such as Ada Boost, with well-defined optimization
problems. This line of inquiry seeks to provide a deeper theoretical
understanding of their computational behaviour and guarantees.
As aresult, much of the scholarly effort has focused on two primary
optimization objectives: maximizing the classification margin and
minimizing the exponential loss function, which are central to the
algorithm’s performance and theoretical foundation.

Results and Discussions

This dataset captures key performance metrics of a Java
application’s heap memory under varying loads. It records four
interrelated variables: heap load (a measure of memory pressure),
GC pause time in milliseconds (the time the application is paused
for garbage collection), throughput in operations per second, and
memory usage as a percentage. The data reveals clear patterns:
as the heap load increases, garbage collection pauses generally
lengthen, throughput decreases, and memory usage increases,
illustrating the trade-offs inherent in JVM memory management
and tuning for optimal application performance.

Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data

Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

2

SCiForce © Gundala, et al.

Table 1. Descriptive Statistics
Heap Load GC Pause Time (ms) Throughput ops (per sec) Memory Utilization percent

count 100 100 100 100

mean 0.576145 119.132 827.8941 69.147113

std 0.237992 28.23808 74.63821 12.245263

min 0.204418 73.7447 696.4571 48.065552

25% 0.354561 95.04684 766.0708 57.042893

50% 0.571314 116.8335 833.4043 68.599603

75% 0.784162 144.6639 889.3874 79.905797

max 0.98951 172.6503 973.9838 92.257718

The descriptive statistics provided in Table 1 for the four key performance parameters establish a baseline context for model interaction.
For a predictive model interaction, such as Ada Boost Regression, to be effective that is, to perform reliably across different data scenarios
it must handle the inherent variability within these parameters. The statistics reveal considerable ranges, with GC pause time varying from
73.7 to 172.7 ms and throughput spanning from 696.5 to 974.0 ops/sec. The mean and median values are generally aligned, suggesting
reasonably symmetrical distributions. A model trained on this dataset should generalize across these distributions, ensuring that its
predictions are considered robust and valid for data points across the entire observed spectrum.

Iy Ltiieanion posent

350 138 130 1# e #aa noo WM M
Heap Losd 5T Faiwn Tirsn Imd Thpsghput 3au [3a1 T Blp oy L e tion porc et

Figure 1: Scatter plot of different machine learning-based Modelling Heap Behaviour for Predictable Performance in Java
Applications

Figure 1 illustrates the relationships between heap load, GC pause time, throughput, and memory usage in machine learning-based
heap behaviour modelling. Strong positive correlations appear between heap loads, GC pauses, and memory usage, while throughput
shows a clear inverse trend, highlighting crucial trade-offs for predictable Java application performance under varying workloads.

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data
Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

3

Sciforce

Heap Load -
GC Pause Time (ms) -
Throughput ops (per sec) -

Memory Utilization percent -

Heap Load -

© Gundala, et al.

—-0.25
- =050

=0.75

GC Pause Time (ms) -

Throughput ops (per sec) -
Memory Utilization percent -

Figure 2: Heat map of the relationship between process parameters and outcomes

Figure 2 provides a heat map illustrating the strong correlations between process parameters and outcomes. Heap load and GC
pause time show a nearly perfect positive correlation with memory usage, while throughput is strongly negatively correlated, indicating
performance degradation due to increased memory pressure and garbage collection overhead.

Predicted vs Actual GC Pause Time (ms) (Training data)

<% q
L]
160 ’.’ﬁ
5 56
£ o4
L] -~
£ 140 !
F -
L] -
g 015’ L
& 120 P
e
3 P
3 e Hide
% .
5 100 .;”0‘
g - s
& '.d’ .
:&9‘.0
4 i L]
80 o2
80 100 120 140 160

Actual GC Pause Time (ms)

Figure 3: Ada Boost Regression on GC Pause Time (ms): training data

Predicted vs Actual GC Pause Time (ms) (Testing data)

r‘J'
. -
160 -~
- J/’ L]
E LI
£ 140 #
= P
o -
E -
3
o r
& 120 g
P .
o /,’ L]
Hi P
£ 2
5 100 ~%
v r
[P
a P
P
L
so{ *
a0 100 120 140 160

Actual GC Pause Time (ms)

Figure 4: Ada Boost Regression on GC Pause Time (ms): testing data

Figure 3 demonstrates the Ada Boost regression performance
on the training data, showing that the predicted GC pause times
closely match the actual values. The tight clustering around the
diagonal indicates high model accuracy, effective learning of
underlying patterns, and a strong suitability for modelling garbage
collection behaviour in Java applications.

Figure 4 illustrates the Ada Boost regression performance on
the test data, where the predicted GC pause times closely follow
the actual measurements. The near-diagonal distribution indicates
good generalization beyond the training data, minimal over
fitting, and a reliable predictive capability for estimating garbage
collection pauses under unseen Java application workloads.

Table 2. Performance Metrics of Ada Boost Regression on GC Pause Time (ms) (Training Data and Testing Data)

Parameter | Data | Symbol | Model R2 EVS MSE RMSE | MAE MaxError | MSLE MedAE
GC Pause | Train | ABR AdaBoost Regression | 0.98709 | 0.98715 | 10.20513 | 3.19455 | 2.65478 | 7.51396 0.00087 | 2.42008
?Iilr?)e Test ABR AdaBoost Regression 0.95623 | 0.95678 | 34.10774 | 5.84018 | 4.64398 | 13.43514 | 0.00166 4.04612

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data

Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

4

Sciforce

The Ada Boost regression model in Table 2 demonstrates
superior performance in predicting GC pause time and effectively
generalizes from the training data to the test data. On the training
set, itachieves near-perfect performance with an R* value 0f0.98709
and an RMSE of 3.19 milliseconds. While the test performance is
lower as expected, it remains robust with an R* value of 0.95623
and an RMSE of 5.84 milliseconds. This minimal performance
drop confirms the model’s effectiveness and its ability to maintain
accuracy and reliability when applied to new data. This stability
is crucial for reliable predictions in various real-world computing
environments.

Predicted vs Actual Throughput ops (per sec) (Training data)

s
L
950 o
- P
8 wt iy e
: g
2900 s%/, o]
»
"
@ o4,
s ® .q'\"‘
-
5 850 //
5 ”’ .
3 ® g
£ 500 o .
= . .«“.‘
3 024"
%] .’Q’.” "
9 750 2756
a . e
P
"
.:r’
700 27) r ,
700 750 800 850 900 950

Actual Throughput ops (per sec)

Figure 5: Ada Boost Regression on Throughput ops (per sec): training
data

Figure 5 shows the Ada Boost regression results for the training
data performance, where the predicted values closely match the
actual measurements. The strong alignment along the diagonal
reflects high prediction accuracy, effective capture of system
performance trends, and the suitability of the model for learning
performance behaviour in Java applications.

Predicted vs Actual Throughput ops (per sec) (Training data)

P
L
950 -
- -
1 n"’;.
hu ‘."i!..”-
Il
2 900 !,’/ I..
"
@ o4
: L
>

g_ 850 ’_,’
§ v
3 w Sy
2 ot 28
£ BOD do
5 20.40,°
E anog'e
- L ”
3 son'l, **
? 750 & ',,. "3
a . e

o,

l:/

700 27 . - .
700 750 800 850 900 950

Actual Throughput ops (per sec)

Figure 6: Ada Boost Regression on Throughput ops (per sec): testing
data data

© Gundala, et al.

Figure 6 illustrates the Ada Boost regression performance
in testing the data for performance prediction. The predicted
values generally follow the ideal diagonal line, indicating
good generalization. Small deviations at higher performance
levels indicate limited prediction error, although the overall
results confirm the reliability of the model in estimating system
performance under unseen workload conditions.

Predicted vs Actual Memory Utilization percent (Training data)

P
90 L
- *
H ie
u e
H agig-80 e
a F il
g 801 »
H Pl]
5 . 5‘/" L
" -~ .
g s0%4 o
70
o -~
H o’
E g 08
L]
H 5 %
B 60+ o
E 0 e
H & oS’
£ o /’;"o
501 o
-
50 60 L] 80 90

Actual Memory Utilization percent

Figure 7: Ada Boost Regression on Memory Utilization percent: training
data

Figure 7 shows the Ada Boost regression results for memory
usage on the training data. The predicted values closely match the
actual measurements along the diagonal line, indicating the high
accuracy of the model, robust learning of memory usage patterns,
and the effective suitability of this approach for modelling memory
behaviour in Java applications.

Predicted vs Actual Memory Utilization percent (Testing data)

—

90 "o
u -
£
£ ‘e e
&EU LI o
§ o

.

= -~
= &
£ ’

70 P
o 7id
£ %

.
T 80 -
£ -
”
;
. -

-y L

50 P

pr
50 60 70 80 90

Actual Memory Utilization percent

Figure 8: Ada Boost Regression on Memory Utilization percent: testing
data

Figure 8 illustrates the Ada Boost regression performance on the
test data for memory usage prediction. The predicted values being
very close to the ideal diagonal line indicates good generalization

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data
Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

SCi Force © Gundala, et al.

and limited error. The small scatter at higher usage levels suggests low variance, and the overall results confirm reliable predictive
capability for unseen workloads.

Table 3. Performance Metrics of Ada Boost Regression on Throughput ops (per sec) (Training Data and Testing Data)

Parameter Data Symbol | Model R2 EVS MSE RMSE MAE MaxError | MSLE MedAE
Throughput | Train | ABR AdaBoost Regression 0.95491 | 0.95529 243.65400 15.60942 13.47391 29.56912 0.00037 13.68261
ops (persec) I'rot | ABR | AdaBoost Regression | 0.88046 | 0.89548 | 768.79570 | 27.72717| 2394814 | 47.81094| 000110 | 27.28496

The Ada Boost Regression model in Table 3 demonstrates robust performance in predicting throughput (operations per second). It
effectively applies the patterns learned during training to unseen test data. Its performance on the training set is excellent; an R* value of
0.95491 and an RMSE of 15.61 ops/sec indicate a precise fit to the data. While an expected drop in performance is observed on the test
set, the model maintains strong predictive capabilities with an R? value of 0.88046 and an RMSE of 27.73 ops/sec. This consistent, albeit
slightly lower, performance confirms the model’s robustness that is, its reliable operation and generalization ability across different data
subsets. This is crucial for stable deployment in production environments.

Table 4. Performance Metrics of Ada Boost Regression on Memory Utilization percent (Training Data and Testing Data)

Parameter | Data | Symbol | Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Memory Train | ABR AdaBoost Regression 0.97715 0.97737 3.37688 1.83763 1.55226 4.49083 0.00075 1.49328
;JSICZE?"“ Test |ABR | AdaBoost Regression 093719 | 093762 | 9.68710 [3.11241| 2.60147 516216 | 0.00217 | 255767

The Ada Boost Regression model in Table 4 demonstrates robust performance in predicting memory usage. This is evidenced by its
strong performance metrics on both the training and testing datasets, indicating reliable generalization. On the training data, the model
achieves an almost perfect fit with an R? value of 0.97715 and a low RMSE of 1.84%, showing its effective learning of the underlying
patterns. Crucially, its performance remains high on unseen test data, with an R” value of 0.93719 and an RMSE of 3.11%. This minimal
drop in performance confirms the model’s robustness its ability to maintain predictive accuracy and stability when applied to new,
independent data, which is essential for deployment in diverse operational environments.

Conclusion o))
anticipate system behaviour under various workloads. The proven

Based on the comprehensive analysis presented in this study, strength and accuracy of Ada Boost Regression in simultaneously
the Ada Boost regression algorithm demonstrates exceptional predicting multiple performance parameters make it an invaluable
capability in modelling heap behaviour for predictable performance asset for optimizing Java application performance, minimizing
in Java applications. This research successfully establishes strong downtime, and ensuring stable operations in production systems
correlations between critical performance parameters, including where memory management and garbage collection efficiency are
heap load, garbage collection pause time, throughput, and memory critical concerns.
usage, providing valuable insights into the inherent complex trade-
offs in JVM memory management. The model’s performance
across the three target variables confirms its effectiveness as a 1 Kapur, D., &Marron, M. (2008). Modeling the heap: a practical

References

predictive tool for Java application optimization. The Ada Boost approach. http://www.software.imdea.org/~marron/papers/marron
regression model exhibits significant accuracy and generalization doctoral.pdf

capabilities across different performance metrics. For GC pause

time prediction, the model achieves excellent results with R? . L . .
lues of 0.987 on the trainine data and 0.956 on the test data Parametric prediction of heap memory requirements. International

va " o g . ' T > Symposium on Memory Management, 141-150. https://doi.

demonstrating minimal over fitting and strong predictive power. ora/10.1145/1375634.1375655

Similarly, throughput prediction maintains robust performance

with R? values of 0.955 and 0.880 for the training and test datasets 3. Seidl, M. L., & Zorn, B. G. (1998). Segregating heap objects

2. Braberman, V., Fernandez, F., Garbervetsky, D., &Yovine, S. (2008).

respectively, while memory usage prediction shows superior by reference behavior and lifetime. 33(11), 12-23. https:/doi.
reliability with R* values of 0.977 and 0.937. These consistent 0r0/10.1145/291006.291012
performance metrics across training and testing phases confirm ; perikala. K (2024). Architecting Retail-Scale Product Knowledge
the model’s ability to effectively generalize to unseen workloads, Graph Systems. International Journal of Artificial intelligence and
making it highly relevant for real-world application in diverse Machine Learning, 2(3), 1-6. doi: https://doi.org/10.55124/aim.
operational environments. v2i3.292

The strong correlations revealed through heat map analysis 5. Zhang, Rui, ZoranBudimlic, and Ken Kennedy. “Performance
provide crucial insights for performance tuning and capacity modeling and prediction for scientific Java applications.” In 2006 IEEE
planning in Java applications. The near-perfect positive correlation International Symposium on Performance Analysis of Systems and
between heap load and both GC pause time and memory usage, Software, pp. 199-210. IEEE, 2006.

combined with a strong negative correlation with performance,

. 11s . . . 6. Raman, Krishna, Yue Zhang, Mark Panahi, Juan A. Colmenares, and
highlights the crucial balance required in memory management

Raymond Klefstad. “Patterns and tools for achieving predictability

strategies. This research sigpiﬁcantly contributes to th_e gfowing and performance with real time Java.” In 11th IEEE International
body of knowledge on predictive performance modelling in Java Conference on Embedded and Real-Time Computing Systems and
environments, providing practitioners with a reliable tool to Applications (RTCSA05), pp. 247-253. IEEE, 2005.

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data
Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

6

http://www.software.imdea.org/~marron/papers/marron_doctoral.pdf
http://www.software.imdea.org/~marron/papers/marron_doctoral.pdf
https://doi.org/10.1145/1375634.1375655
https://doi.org/10.1145/1375634.1375655
https://doi.org/10.1145/291006.291012
https://doi.org/10.1145/291006.291012

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Sciforce

PK Kanumarlapudi. (2023). Multi-Objective Optimization of Healthcare
Service Parameters Using GRA-Based Genetic Algorithms. J Comp
Sci Appl Inform Technol. 8(1): 1-7.

Kiran Kumar Mandula Samuel, Venkata Pavan Kumar Aka. (2023).
Al for Special Education Closing Gaps in Inclusive Learning Using
MOORA Method. International Journal of Computer Engineering and
Technology (IJCET), 14(1), 249-267.

Chen, Guilin, M. Kandemir, Narayanan Vijaykrishnan,
AnandSivasubramaniam, and Mary Jane Irwin. “Analyzing heap error
behavior in embedded JVM environments.” In Proceedings of the
2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pp. 230-235. 2004.

Harkema, Marcel, Dick Quartel, B. M. M. Gijsen, and Robert D. van der
Mei. “Performance monitoring of Java applications.” In Proceedings
of the 3rd international workshop on Software and performance, pp.
114-127. 2002.

Dufour, Bruno, KarelDriesen, Laurie Hendren, and Clark Verbrugge.
“Dynamic metrics for Java.” In Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, pp. 149-168. 2003.

Costa, Diego, ArturAndrzejak, Janos Seboek, and David Lo. “Empirical
study of usage and performance of java collections.” In Proceedings
of the 8th ACM/SPEC on International Conference on Performance
Engineering, pp. 389-400. 2017.

Perikala. K. (2025). Cloud-Native NoSQL Foundations for Large-
Scale Generative Al Platforms. International Journal of Cloud
Computing and Supply Chain Management, 1(3), 1-6. doi: https://doi.
org/10.55124/ijccscm.v1i3.248

PK Kanumarlapudi. “Improving Data Market Implementation Using
Gray Relational Analysis in Decentralized Environments” Journal of
Artificial intelligence and Machine Learning., 2024, vol. 2, no. 1, pp.
1-7. doi: https://dx.doi.org/10.55124/ jaim.v2i1.271

Shuf, Yefim, Mauricio J. Serrano, Manish Gupta, and Jaswinder Pal
Singh. “Characterizing the memory behavior of Java workloads: A
structured view and opportunities for optimizations.” In Proceedings
of the 2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, pp. 194-205. 2001.

Kwon, Jagun, Andy Wellings, and Steve King. “Ravenscar-Java: A
high integrity profile for real-time Java.” In Proceedings of the 2002
joint ACM-ISCOPE conference on Java Grande, pp. 131-140. 2002.

Rao, Pradeep, and Kazuaki Murakami. “Empirical performance models
for Java workloads.” In International Conference on Architecture of
Computing Systems, pp. 219-232. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

Gurubasannavar. S D, Sunku. R, Dandasi. V V. (2025). Selecting
an Extract, Transform, and Load (ETL) Software Solution: A
Comprehensive Evaluation and Comparison . International Journal
of Cloud Computing and Supply Chain Management, 1(3), 1-7. doi:
https://doi.org/10.55124/ijccscm.v1i3.249

Devalla, Sireesha. “Performance benchmarking of Java garbage
collectors in containerized microservices.” Journal of Scientific and
Engineering Research 7, no. 6 (2020): 326-334.

Venkata Pavan Kumar Aka and Kiran Kumar Mandula Samuel.
(2024). Adoption of SAP FSCM - Enhancing Collections and Dispute
Processes in Spain, Portugal, and UK Operations. International
Journal of Information Technology and Management Information
Systems (IJITMIS), 15(2), 148-161.

DOI: https://doi.org/10.34218/IJITMIS_15_02_012

23.

26.

27.

28.

29.

30.

31.

© Gundala, et al.

Brosig, Fabian, Samuel Kounev, and Klaus Krogmann. “Automated
extraction of palladio component models from running enterprise
java applications.” In Proceedings of the Fourth International ICST
Conference on Performance Evaluation Methodologies and Tools, pp.
1-10. 2009.

Chen, Kandemir, Vijaykrishnan, and Irwin. “PennBench: a benchmark
suite for embedded Java.” In 2002 IEEE International Workshop on
Workload Characterization, pp. 71-80. IEEE, 2002.

Perikala. K (2024). Large-Scale Architecture for Retail Platforms
Using Cloud-Native Big Data Systems. International Journal of
Computer Science and Data Engineering, 1(3), 1-7 doi: https://dx.doi.
org/10.55124/csdb.v1i3.268

Freund, Robert M., Paul Grigas, and Rahul Mazumder. “Adaboost
and forward stagewise regression are first-order convex optimization
methods.” arXiv preprint arXiv: 1307.1192 (2013).

Zhang, Zhihua, James T. Kwok, and Dit-Yan Yeung. “Surrogate
maximization/minimization algorithms for adaboost and the logistic
regression model.” In Proceedings of the twenty-first international
conference on Machine learning, p. 117. 2004.

PK Kanumarlapudi. (2024) Improving Data Governance with
Advanced trade-off-Based Decision Models: A Comparative Analysis
of Open Data Platform Implementations in Multiple Domains. SOJ
Mater Sci Eng 10(2): 1-6. DOI: 10.15226/2473-3032/10/2/00183

Li, Pan, ZhongjieShen, and Xingwu Zhang. “Evaluation method
of degradation index based on AdaBoost regression.” In Journal
of Physics: Conference Series, vol. 2031, no. 1, p. 012059. |IOP
Publishing, 2021.

Wen, Jingran, Xiaoyan Zhang, Ye Xu, Zuofeng Li, and Lei Liu.
“Comparison of AdaBoost and logistic regression for detecting
colorectal cancer patients with synchronous liver metastasis.” In
2009 International Conference on Biomedical and Pharmaceutical
Engineering, pp. 1-6. IEEE, 2009.

Suresh Deepak Gurubasannavar, Varun Venkatesh Dandasi,
Raghavendra Sunku. (2025). Enhancing Smart Home Automation
with Al And Topsis-Based Decision Making. International Journal
of Information Technology and Management Information Systems
(ITMIS), 16(6), 1-22.

Patil, Sangram, AumPatil, and Vikas M. Phalle. “Life prediction
of bearing by using adaboostregressor.” In Proceedings of
TRIBOINDIA-2018 an International Conference on Tribology. 2018.

Citation: Gundala, Tirumala Rao (2025). Ada Boost Regression-Based Modelling of Heap Behaviour for Predictable Performance in Java Applications. Journal of Data

Science and Information Technology, 2(2), 1-7 doi: https://dx.doi.org/10.55124/jdit.v2i2.275

7

