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Abstract
This research addresses the critical challenge in modelling heap behaviour for predictable performance in Java applications using 

machine learning approaches. Since heap memory management significantly impacts application responsiveness and performance, 
understanding the complex relationships between heap load, garbage collection pause times, throughput, and memory usage 
becomes essential for optimization. Through extensive statistical analysis, this study establishes strong correlations between 
parameters and employs Ada Boost Regression to predict three key performance metrics across 100 observations. This method 
demonstrates exceptional predictive accuracy, achieving R² values of 0.987, 0.955, and 0.977 for GC pause time, throughput, 
and memory usage respectively on the training data, with robust generalization to the test data (R² values of 0.956, 0.880, and 
0.937). The results reveal near-perfect positive correlations between heap load, GC pause times, and memory usage, while 
throughput exhibits a strong negative correlation, illustrating the fundamental JVM memory management trade-offs. This research 
provides practitioners with a reliable predictive tool for ensuring stable operations in production environments where performance 
optimization, capacity planning, and efficient memory management are paramount.
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Introduction
 Accurate modelling of heap evolution is crucial for optimization 

and verification tasks, yet previous methods generally fall short 
in either accuracy or efficiency, limiting their applicability in 
practice and hindering progress in several research areas. This 
work presents a general heap analysis approach that aims to 
provide comprehensive heap insights for real-world programs 
while remaining computationally feasible. By leveraging targeted 
design heuristics, it maintains speed and accuracy on typical code 
patterns, selectively relaxing accuracy in rare cases to improve 
overall performance. This technique fully supports essential Java 
language features and reliably generates precise information 
suitable for various optimization applications [1]. This research 
proposes a parametric technique for estimating the heap memory 
usage of imperative programs such as Java. This approach prevents 
potential memory exhaustion errors by calculating symbolic 
polynomial approximations of the dynamic memory required for 
the safe execution of a method.This technique accounts for both 
object allocations and data transfers occurring within the main 

function and its nested calls. By employing constrained memory 
management, it optimizes peak memory usage by organizing 
objects into regions that align with the function’s execution 
timeline.

 The underlying challenge is formulated as a parameter-
dependent polynomial optimization problem, which is then 
solved using the Bernstein basis method. The resulting tool has 
been evaluated and used in several benchmark programs [2]. 
Dynamic memory allocation plays a crucial role in modern 
object-oriented software. However, as processor speeds have 
grown faster than memory access times, and as applications grow 
in size and memory requirements, physical memory performance 
has become increasingly critical. Without this, the slow nature 
of memory compared to processing would increasingly degrade 
program performance. This research paper explores the use of 
profile-driven optimization to predict the reference and lifetime 
patterns of heap objects. The goal is to improve spatial locality and 
reduce page faults, thereby enhancing performance, especially in 
memory-constrained environments [3]. Based on the complexity 
of the problem, we propose a framework for modelling and 
predicting the execution time of scientific applications written in 
Java.

 The primary objective of this research is to achieve an efficient 
workload balance for distributed Java applications running in a 
grid computing environment. We introduce a distinction between 
predictable and unpredictable processing points within Java 
applications and explain our methodology in detail for modelling 
and predicting program performance [4]. The Real-Time Java 
Expert Group has developed a specification to extend the benefits of 
Java, particularly its developer-friendly features, to the field of real-
time systems. These benefits are especially crucial for distributed 
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real-time systems, where software development has traditionally 
been considered complex, labour-intensive, and prone to errors 
[5]. Java is increasingly becoming the preferred language for 
software development in various embedded environments. The use 
of Java’s micro editions for creating embedded software solutions is 
a prime example of this trend [6]. In recent years, Java has emerged 
as a robust and well-established platform. Its inherent portability 
has cemented its popularity for enterprise-level applications and 
for implementing standard components such as middleware and 
business logic [7]. Determining the varying parameters proved 
to be significantly more challenging than initially anticipated. 
To address this, we developed a dedicated framework within the 
Java programs for this study to calculate these parameters [8]. 
Each implementation is designed to meet specific performance 
requirements, leading to unique design trade-offs. For example, 
Java’s Array List uses less memory than Linked List, but incurs a 
higher asymptotic cost for inserting or deleting elements at any 
position in the list [9]. The purpose of this article is to analyse the 
memory characteristics of key Java benchmarks used for evaluating 
JVMs and JIT compilers. It aims to provide structured, multi-
level insights into these workloads to assist computer architects 
and JVM component developers in their design processes [10]. 
Mechanisms such as automatic garbage collection and dynamic 
class loading are often considered problematic in time-sensitive 
or performance-critical environments. Additionally, since the 
introduction of the Java Virtual Machine, a significant number of 
security vulnerabilities have been discovered in byte code verifiers 
and just-in-time compilers.

All these issues combined make Java and its related technologies 
unsuitable for high-reliability systems [11]. It has been proven 
that the performance characteristics of Java applications differ 
significantly from the performance of general-purpose tasks. This 
necessitates an in-depth study of Java-specific functionalities at 
the microarchitecture level. Conducting performance analyses 
of Java tasks in real-world environments supports optimization 
efforts and reveals critical issues that need to be considered in the 
design and development of future systems designed to run Java 
[12]. This automation is facilitated by garbage collection, which 
is a background process that reclaims memory from objects 
that are no longer in use. Integrating garbage collection into the 
Java HotSpot Virtual Machine represents a major advancement, 
greatly simplifying development for large-scale applications and 
improving runtime stability [13]. The platform examined in this 
study is Oracle Web Logic Server, a leading Java EE application 
server in the market. Our method for extracting its model relies on 
performance monitoring data collected using industry-standard 
business monitoring tools designed for this platform [15]. 

Materials and Method
 Heap Load: Heap leaching, in the mining industry, refers to 

the process of loading ore onto a heap leaching pad. Typically, 
crushed and agglomerated processed ore is systematically stacked 
in layers using heavy equipment such as conveyors or trucks. This 
planned stacking creates a permeable, uniform heap, allowing the 
leaching solution to penetrate evenly for optimal metal recovery. 
This method is crucial to the efficiency of heap leaching processes 
used to extract metals such as gold, copper, and uranium.

GC Pause Time (ms): GC pause time is the total duration, in 
milliseconds, during which all application threads are stopped 
during a garbage collection (GC) event in managed memory 
environments such as the JVM or .NET CLR. This “stop-the-

world” pause allows the collector to safely reclaim unused memory 
without interference from the running program threads. This is 
a critical performance metric, as excessive pause times directly 
impact application responsiveness, latency, and throughput, 
making its reduction a key objective in GC tuning.

Throughput ops (per sec): Throughput (operations/second) 
is a key performance metric that measures the total number of 
operations a system can successfully complete per second. It 
quantifies overall work capacity and efficiency. In contexts such 
as databases, APIs, or servers, an ‘operation’ is a defined unit of 
work, such as a transaction, query, or request. Higher throughput 
indicates robust processing capability under heavy workloads, but 
to fully assess system performance and user experience, it must be 
balanced with other metrics such as latency and error rates.	

Memory Utilization percent: Memory usage (percentage) 
measures the ratio of the total physical or virtual RAM currently 
in use by processes and the operating system on a system. It is a 
key health metric indicating how much memory is available for 
new tasks. High usage can indicate efficient resource utilization, 
but when sustained near 100%, it often leads to performance 
degradation. This occurs because the system increasingly relies 
on slower disk-based swapping, causing bottlenecks. Monitoring 
this percentage is crucial for capacity planning, preventing out-of-
memory errors, and ensuring application stability.
Instructions for machine learning

Ada Boost Regression: Boosting is a very effective and widely 
used technique in supervised learning, which works by successively 
combining a series of simple, weak models to form a single, highly 
accurate predictive model. This process operates in a greedy 
manner, with every new student concentrating on the mistakes 
made by their predecessors. Although its initial conception was 
for classification, the method has proven to be remarkably versatile 
across a variety of problem types. A significant and fascinating area 
of research in this field involves systematically combining boosting 
algorithms, such as Ada Boost, with well-defined optimization 
problems. This line of inquiry seeks to provide a deeper theoretical 
understanding of their computational behaviour and guarantees. 
As a result, much of the scholarly effort has focused on two primary 
optimization objectives: maximizing the classification margin and 
minimizing the exponential loss function, which are central to the 
algorithm’s performance and theoretical foundation.

Results and Discussions
 This dataset captures key performance metrics of a Java 

application’s heap memory under varying loads. It records four 
interrelated variables: heap load (a measure of memory pressure), 
GC pause time in milliseconds (the time the application is paused 
for garbage collection), throughput in operations per second, and 
memory usage as a percentage. The data reveals clear patterns: 
as the heap load increases, garbage collection pauses generally 
lengthen, throughput decreases, and memory usage increases, 
illustrating the trade-offs inherent in JVM memory management 
and tuning for optimal application performance.
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Table 1. Descriptive Statistics
Heap Load GC Pause Time (ms) Throughput ops (per sec) Memory Utilization percent

count 100 100 100 100
mean 0.576145 119.132 827.8941 69.147113
std 0.237992 28.23808 74.63821 12.245263
min 0.204418 73.7447 696.4571 48.065552
25% 0.354561 95.04684 766.0708 57.042893
50% 0.571314 116.8335 833.4043 68.599603
75% 0.784162 144.6639 889.3874 79.905797
max 0.98951 172.6503 973.9838 92.257718

The descriptive statistics provided in Table 1 for the four key performance parameters establish a baseline context for model interaction. 
For a predictive model interaction, such as Ada Boost Regression, to be effective that is, to perform reliably across different data scenarios 
it must handle the inherent variability within these parameters. The statistics reveal considerable ranges, with GC pause time varying from 
73.7 to 172.7 ms and throughput spanning from 696.5 to 974.0 ops/sec. The mean and median values are generally aligned, suggesting 
reasonably symmetrical distributions. A model trained on this dataset should generalize across these distributions, ensuring that its 
predictions are considered robust and valid for data points across the entire observed spectrum.

Figure 1:    Scatter plot of different machine learning-based Modelling Heap Behaviour for Predictable Performance in Java 
Applications

Figure 1 illustrates the relationships between heap load, GC pause time, throughput, and memory usage in machine learning-based 
heap behaviour modelling. Strong positive correlations appear between heap loads, GC pauses, and memory usage, while throughput 
shows a clear inverse trend, highlighting crucial trade-offs for predictable Java application performance under varying workloads.
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Figure 2:    Heat map of the relationship between process parameters and outcomes

Figure 2 provides a heat map illustrating the strong correlations between process parameters and outcomes. Heap load and GC 
pause time show a nearly perfect positive correlation with memory usage, while throughput is strongly negatively correlated, indicating 
performance degradation due to increased memory pressure and garbage collection overhead.

Figure 3: Ada Boost Regression on GC Pause Time (ms): training data

Figure 3 demonstrates the Ada Boost regression performance 
on the training data, showing that the predicted GC pause times 
closely match the actual values. The tight clustering around the 
diagonal indicates high model accuracy, effective learning of 
underlying patterns, and a strong suitability for modelling garbage 
collection behaviour in Java applications.

Figure 4: Ada Boost Regression on GC Pause Time (ms): testing data

Figure 4 illustrates the Ada Boost regression performance on 
the test data, where the predicted GC pause times closely follow 
the actual measurements. The near-diagonal distribution indicates 
good generalization beyond the training data, minimal over 
fitting, and a reliable predictive capability for estimating garbage 
collection pauses under unseen Java application workloads.

Table 2. Performance Metrics of Ada Boost Regression on GC Pause Time (ms) (Training Data and Testing Data)
Parameter Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
GC Pause 
Time 
(ms) 

Train ABR AdaBoost Regression 0.98709 0.98715 10.20513 3.19455 2.65478 7.51396 0.00087 2.42008
Test ABR AdaBoost Regression 0.95623 0.95678 34.10774 5.84018 4.64398 13.43514 0.00166 4.04612
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The Ada Boost regression model in Table 2 demonstrates 
superior performance in predicting GC pause time and effectively 
generalizes from the training data to the test data. On the training 
set, it achieves near-perfect performance with an R² value of 0.98709 
and an RMSE of 3.19 milliseconds. While the test performance is 
lower as expected, it remains robust with an R² value of 0.95623 
and an RMSE of 5.84 milliseconds. This minimal performance 
drop confirms the model’s effectiveness and its ability to maintain 
accuracy and reliability when applied to new data. This stability 
is crucial for reliable predictions in various real-world computing 
environments.

Figure 5: Ada Boost Regression on Throughput ops (per sec): training 
data

Figure 5 shows the Ada Boost regression results for the training 
data performance, where the predicted values closely match the 
actual measurements. The strong alignment along the diagonal 
reflects high prediction accuracy, effective capture of system 
performance trends, and the suitability of the model for learning 
performance behaviour in Java applications.

Figure 6: Ada Boost Regression on Throughput ops (per sec): testing 
data data

Figure 6 illustrates the Ada Boost regression performance 
in testing the data for performance prediction. The predicted 
values generally follow the ideal diagonal line, indicating 
good generalization. Small deviations at higher performance 
levels indicate limited prediction error, although the overall 
results confirm the reliability of the model in estimating system 
performance under unseen workload conditions.

Figure 7: Ada Boost Regression on Memory Utilization percent: training 
data

Figure 7 shows the Ada Boost regression results for memory 
usage on the training data. The predicted values closely match the 
actual measurements along the diagonal line, indicating the high 
accuracy of the model, robust learning of memory usage patterns, 
and the effective suitability of this approach for modelling memory 
behaviour in Java applications.

Figure 8: Ada Boost Regression on Memory Utilization percent: testing 
data

Figure 8 illustrates the Ada Boost regression performance on the 
test data for memory usage prediction. The predicted values being 
very close to the ideal diagonal line indicates good generalization 
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and limited error. The small scatter at higher usage levels suggests low variance, and the overall results confirm reliable predictive 
capability for unseen workloads.

Table 3. Performance Metrics of Ada Boost Regression on Throughput ops (per sec) (Training Data and Testing Data)

Parameter Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Throughput 
ops (per sec) 

Train ABR AdaBoost Regression 0.95491 0.95529 243.65400 15.60942 13.47391 29.56912 0.00037 13.68261

Test ABR AdaBoost Regression 0.88046 0.89548 768.79570 27.72717 23.94814 47.81094 0.00110 27.28496

The Ada Boost Regression model in Table 3 demonstrates robust performance in predicting throughput (operations per second). It 
effectively applies the patterns learned during training to unseen test data. Its performance on the training set is excellent; an R² value of 
0.95491 and an RMSE of 15.61 ops/sec indicate a precise fit to the data. While an expected drop in performance is observed on the test 
set, the model maintains strong predictive capabilities with an R² value of 0.88046 and an RMSE of 27.73 ops/sec. This consistent, albeit 
slightly lower, performance confirms the model’s robustness that is, its reliable operation and generalization ability across different data 
subsets. This is crucial for stable deployment in production environments.

Table 4. Performance Metrics of Ada Boost Regression on Memory Utilization percent (Training Data and Testing Data)

Parameter Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Memory 
Utilization 
percent

Train ABR AdaBoost Regression 0.97715 0.97737 3.37688 1.83763 1.55226 4.49083 0.00075 1.49328

Test ABR AdaBoost Regression 0.93719 0.93762 9.68710 3.11241 2.60147 5.16216 0.00217 2.55767

The Ada Boost Regression model in Table 4 demonstrates robust performance in predicting memory usage. This is evidenced by its 
strong performance metrics on both the training and testing datasets, indicating reliable generalization. On the training data, the model 
achieves an almost perfect fit with an R² value of 0.97715 and a low RMSE of 1.84%, showing its effective learning of the underlying 
patterns. Crucially, its performance remains high on unseen test data, with an R² value of 0.93719 and an RMSE of 3.11%. This minimal 
drop in performance confirms the model’s robustness its ability to maintain predictive accuracy and stability when applied to new, 
independent data, which is essential for deployment in diverse operational environments.

Conclusion
 Based on the comprehensive analysis presented in this study, 

the Ada Boost regression algorithm demonstrates exceptional 
capability in modelling heap behaviour for predictable performance 
in Java applications. This research successfully establishes strong 
correlations between critical performance parameters, including 
heap load, garbage collection pause time, throughput, and memory 
usage, providing valuable insights into the inherent complex trade-
offs in JVM memory management. The model’s performance 
across the three target variables confirms its effectiveness as a 
predictive tool for Java application optimization. The Ada Boost 
regression model exhibits significant accuracy and generalization 
capabilities across different performance metrics. For GC pause 
time prediction, the model achieves excellent results with R² 
values of 0.987 on the training data and 0.956 on the test data, 
demonstrating minimal over fitting and strong predictive power. 
Similarly, throughput prediction maintains robust performance 
with R² values of 0.955 and 0.880 for the training and test datasets 
respectively, while memory usage prediction shows superior 
reliability with R² values of 0.977 and 0.937. These consistent 
performance metrics across training and testing phases confirm 
the model’s ability to effectively generalize to unseen workloads, 
making it highly relevant for real-world application in diverse 
operational environments.

 The strong correlations revealed through heat map analysis 
provide crucial insights for performance tuning and capacity 
planning in Java applications. The near-perfect positive correlation 
between heap load and both GC pause time and memory usage, 
combined with a strong negative correlation with performance, 
highlights the crucial balance required in memory management 
strategies. This research significantly contributes to the growing 
body of knowledge on predictive performance modelling in Java 
environments, providing practitioners with a reliable tool to 

anticipate system behaviour under various workloads. The proven 
strength and accuracy of Ada Boost Regression in simultaneously 
predicting multiple performance parameters make it an invaluable 
asset for optimizing Java application performance, minimizing 
downtime, and ensuring stable operations in production systems 
where memory management and garbage collection efficiency are 
critical concerns.
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