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Abstract
The study investigated the advancement of 3D printing technology has revolutionized manufacturing across multiple industries, 

with composite materials playing a crucial role in enhancing material properties and expanding technological capabilities. 
This study investigates the intricate relationships between 3D printing process parameters and the mechanical properties of 
composite materials, employing advanced machine learning techniques to predict and optimize tensile strength. The research 
explores the impact of key printing parameters: printing speed, nozzle temperature, and filler material percentage on the tensile 
strength of 3D-printed composite materials. A comprehensive experimental dataset was collected, analyzing 30 different printing 
configurations to understand their effects on material performance. Three machine learning regression models were evaluated 
for predictive accuracy: AdaBoost Regression, Multilayer Perceptron (MLP) Regressor, and Gaussian Process Regressor. Each 
model was trained and tested to predict tensile strength based on input parameters. Correlation analysis revealed a strong positive 
relationship between filler material percentage and tensile strength, with a correlation coefficient of 0.94.The correlation heatmap 
and descriptive statistics highlighted complex interactions between printing parameters. Printing speed showed a moderately 
negative correlation with tensile strength (-0.54), while nozzle temperature demonstrated minimal direct influence. Performance 
metrics revealed significant challenges in model generalization. 

The AdaBoost Regression model showed the most stable performance, with the Gaussian Process Regressor and MLP Regressor 
struggling to generalize beyond training data. This underscores the complexity of predicting composite material properties and the 
need for sophisticated modeling approaches. The study contributes to the understanding of 3D printing composite materials by 
demonstrating the potential of machine learning in predicting and optimizing material characteristics. The findings offer insights 
into process parameter optimization, highlighting the critical role of careful parameter selection in achieving desired mechanical 
properties. Future research should focus on improving model generalization, expanding the dataset, and exploring advanced 
machine learning techniques to enhance predictive accuracy in composite material 3D printing.
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Introduction
 Dentistry has been transformed by 3D printing, especially in 

the production of personalized implants, surgical guides, aligners, 
and restorations. This innovative technology makes use of a 
variety of composites and polymers, each specifically designed to 
address particular dental requirements. The materials utilized in 
dental 3D printing are examined in this paper, with an emphasis 
on orthodontic applications. 3D-printed crowns, bridges, surgical 
guides, removable prostheses, and aligners are noteworthy 
innovations. Modern manufacturing processes in a variety of 
dental professions, including prosthetics, periodontology, oral 
and dental surgery, implantology, orthodontics, and regenerative 
dentistry, are made possible by the ongoing development of 

innovative materials, including ecologically friendly solutions. To 
ensure their clinical safety, new materials such as PLA infused with 
nanohydroxyapatite and PMMA reinforced with nanodiamonds 
need more research. All things considered, 3D printing in dentistry 
has a bright future ahead of it, with the potential to revolutionise 
patient care and treatment results.  [1]In particular, the study 
investigates cube-shaped structures, some of which have PLA 
and LW-PLA filament layers that alternate. Analyzing the effects 
of mixing these two materials on the mechanical and physical 
characteristics of the composites is the goal. The findings could 
offer valuable insights into applications requiring lightweight yet 
durable components, such as in manufacturing and design. This 
work adds to the expanding knowledge base on utilizing 3D 
printing technology for developing advanced composite materials. 
[2]3D printing parameters for composite filaments made from 
natural fibers, particularly flax, combined with polylactic acid 
(PLA). Using Fused Deposition Modeling (FDM), the authors 
developed a novel composite filament and conducted an in-depth 
evaluation of its mechanical properties. To refine the 3D printing 
process, the study applied Taguchi’s L27 orthogonal array, enabling 
a structured assessment of key characteristics include occupancy 
ratios, nozzle speed, infill patterns, and layer thickness. Tensile and 
impact tests were used. The findings demonstrated the crucial role 
that layer thickness plays in tensile characteristics, and particular 
values were found to maximise impact resistance and tensile 
strength. 
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This work advances sustainable manufacturing methods by 
offering insightful information about using natural fibres in 
composite materials for 3D printing.  [3] Continuous fiber-
reinforced thermoset composites (CFRPCs) were robotically 
3D printed, demonstrating the cost-effectiveness of 3D printing 
for quick prototyping and composite material modification. It 
underscores the advantages of integrating multi-axis robotic 
systems into the printing process, which enhance motion 
precision, design versatility, and scalability in manufacturing. A 
robot-assisted manufacturing platform is presented, accompanied 
by a digital workflow specifically designed for 3D printing UV-
curable CFRPCs. The research establishes a transferable protocol 
that includes coordinate computation, trajectory planning, and 
validation processes, enabling the creation of composite samples on 
both flat and curved surfaces. Additionally, the study demonstrates 
the ability to print on substrates with unknown geometries using 
laser-based 3D scanning. These methods and workflows are 
adaptable to a broad range of feedstock materials and robotic 
systems, marking a notable advancement in 3D-printed CFRPC 
technology and opening doors to further innovations in the field. 
[4]Three-dimensional (3D) printing technology’s incorporation 
of carbon fibre and polymer matrix composites highlights the 
exceptional advantages of fusing the lightweight, strong, and 
long-lasting qualities of carbon fibre with polymer matrices. This 
collaboration opens up new avenues for creative designs and 
production uses in a variety of sectors, including medical devices, 
aircraft, automotive, and space exploration. The conversation is 
on 3D printing material innovations, assessing the state of the 
art and prospects for these technologies in the future. It discusses 
the difficulties of integrating carbon fiber-polymer composites 
into the 3D printing process while highlighting their special 
qualities and benefits. The article is a vital resource for materials 
science and engineering professionals and researchers, providing 
a comprehensive overview of the current state, advantages, 
challenges, and opportunities.[5]3D printing techniques, Using 
stereolithography and extrusion to create multipurpose polymer 
composites . 

It highlights the innovative integration of traditional additive 
manufacturing polymers like PEGDA with biomedical polymers 
such as PVA. Additionally, the inclusion of carbon nanostructures, 
such as nanodiamonds and graphene nanoplates, along with 
conductive polymers like PEDOT and PANI, enables the creation 
of objects with customized functional properties. These advanced 
materials are especially useful in biomedical applications, 
including the fabrication of scaffolds that promote cell growth 
and proliferation. The study also explores the development 
of soft electrodes for use in organic compound sensors and 
electrocardiogram monitoring systems, offering real-time 
monitoring capabilities. Overall, it underscores the potential of 
these cutting-edge 3D printing methods to create versatile and 
functional polymer composites for many different applications. 
[6]the creation and improvement of biomass–fungi composite 
materials using fungal hyphae and particles of agricultural 
residue. These materials have a lot of promise for use in sectors 
like construction, furniture, and packaging. The study highlights 
3D printing as a cutting-edge manufacturing process that offers 
a contemporary substitute for conventional moulding techniques. 
But there are still issues to be resolved, such as attaining exact 
geometric correctness and dealing with height shrinking after 
printing. The study looks at how ionic crosslinking affects the 
physical characteristics. of the composite materials and the quality 
of 3D-printed outputs. Results reveal that increasing sodium 

alginate concentration improves geometric accuracy, minimizes 
height shrinkage, and enhances the texture and cohesiveness of the 
biomass–fungi mixtures. [7]3D composite printing, focusing on 
the integration of carbon fibers into two thermoplastic matrices: 
Polyamide with polyethylene terephthalate-glycol (PET-G) 
(PA).  Examining the effects of these polymer matrices on the 
mechanical characteristics and microstructure of the resultant 
composite materials is the aim. Composite Fiber Co-Extrusion 
technology is used to produce samples containing both short and 
continuous carbon fibers, enabling a thorough evaluation of their 
performance. Four different sample types are prepared—two for 
each polymer matrix—and tested under uniform 3D printing 
conditions to ensure consistency. 

The research involves analyzing the microstructure using 
microCT imaging, assessing mechanical strength through tensile 
tests, and evaluating thermal expansion properties relevant to 
aerospace applications. This research offers valuable insights for 
advancing composite materials used in aerospace and automotive 
industries, with a particular emphasis on their behavior in low-
temperature environments, essential for extreme-condition 
applications. [8]The process starts by optimizing 3D printing 
technology, highlighting the need to upgrade equipment 
and adjust printing settings to improve the adaptability and 
performance of polymer composites. The review then presents 
innovative materials for 3D printing, such as new filaments, inks, 
photosensitive resins, and powders, explaining their distinctive 
properties and uses. The review also examines the effects of 
topological shape design and functional filler distribution on the 
characteristics of 3D printed goods. [9] Graphene composites are 
known for their remarkable qualities, such as radiation shielding, 
thermal resistance, and electrical conductivity, which make them 
ideal for multipurpose parts in space missions. The study tackles 
the difficulties of employing exfoliated graphene nanoplatelets 
(xGnP) composites and medium-density polyethylene (MDPE) 
in fused filament manufacture. The objective is to determine the 
FFF parameters required for effective 3D printing and improve the 
filament extrusion process. Through outgassing tests conducted 
under the AM0 sun spectrum, the study also evaluates the 
3D-printed materials’ compatibility with the space environment. 
The results demonstrate the possibility of FFF-based methods 

Figure 1: 3D Printing of Composite Materials
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for producing MDPE/xGnP composites effectively and provide 
insightful information for in-space fabrication. [10] 

The utilisation of composite materials in fused deposition 
modelling is highlighted in this evaluation of the state of 3D 
printing today (FDM).  3D printing’s history began in 1984 
with the development of stereolithography, which signalled the 
beginning of the third Industrial Revolution and commercial 
additive manufacturing (AM). When Charles (“Chuck”) Hull filed 
for a patent on the method in 1984, he came up with the term 
“stereolithography.” Hull established 3D Systems, the first 3D 
printing business, in 1986 after creating this method, which allows 
the production of 3D things from layers of UV light-sensitive resin 
based on CAD software data. Scott Crump established Stratasys, the 
world’s top 3D printing firm, after discovering FDM in 1988. FDM 
greatly shortens manufacturing cycle times by enabling the quick 
creation of 3D components from CAD designs. Molten material is 
forced into a print head nozzle during the process, depositing the 
material in horizontal layers as the head moves under computer 
control. Laminated Object Manufacturing (LOM), a technique 
developed by Helisys in 1991, creates the object by cutting and 
adhering sheets of paper together. [11]the revolutionary effects 
of advanced composite materials and 3D printing technologies 
on a range of sectors. When it comes to mechanical, thermal, 
and electrical qualities, composite materials work better together 
in 3D printing than single-material composites making them 
highly advantageous in sectors such as aerospace, healthcare, and 
construction. The research highlights the innovative nature of 
this technology, examining its future possibilities. One key aspect 
investigated is the effect of print speeds on quality and efficiency. 
Fused Deposition Modeling (FDM) tests speeds ranging from 40 
to 150 mm/s, assessing factors like layer adhesion and resolution.

 These factors, including layer processing times, are crucial for 
optimizing print quality and production efficiency. The research 
emphasizes the need to balance speed, material properties, and 
desired print outcomes to enhance both product performance and 
manufacturing productivity. The potential of composite material 3D 
printing is highlighted, underscoring its significance in commercial 
and industrial applications. As an additive manufacturing process, 
3D printing differs from traditional subtractive manufacturing by 
building up materials layer by layer rather than removing material 
from solid blocks. [12]Using 3D printing to create complexly 
shaped objects has become commonplace.  Recent advancements 
in multi-material printing suggest that this technology could offer 
even greater design possibilities beyond just shape manipulation. 
In this study, we demonstrate how particle orientation can be 
controlled in a direct ink-writing process using anisotropic 
particles. We can direct particle alignment by applying modest 
magnetic fields to inks that contain magnetised stiff platelets. 
Furthermore, a two-component mixing system and multimaterial 
dispensers enable exact control over the local material composition. 
[13]3D printing technology is increasingly being used across 
various fields of research and development. However, the potential 
of this transformative technology is still limited by the narrow 
selection of printable materials with a restricted range of physical 
and chemical properties. 

There is growing interest in enhancing and broadening the 
properties of common printing materials by incorporating fillers 
with distinctive qualities or blending different materials to create 
high-performance composites. Several industries, including 
biological, mechanical, electrical, thermal, and optical devices, 
have already begun using these 3D printed composites. 3D 

printed composites are becoming more and more popular because 
of their capacity to create intricate structures, their affordable 
manufacturing costs, and the benefits of quick prototyping. 
This review focuses on current research that has improved the 
mechanical, electrical, thermal, optical, and biomaterial properties 
of basic 3D printable materials by adding nanoparticles, fibres, 
other polymers, or chemical processes to build composites. [14]
These days, composite materials can be created by modern 
3D printers as well as printed into components. At least two 
components with different qualities make up a composite 
material. It is a synthetically created heterogeneous material that 
usually consists of a matrix phase, which can be made of metal, 
ceramic, or polymer, and a reinforcement phase, which is normally 
rigid and offers resistance to external loads. the matrix is made 
to absorb the reinforcement, keeping it in place and distributing 
weight to the fibres.  By combining materials with different 
properties, composites are created with enhanced characteristics. 
Common features of composite materials include reduced weight, 
increased strength, stiffness, toughness, and superior fatigue 
resistance. Certain composites also exhibit better properties 
like corrosion resistance, heat resistance, chemical stability, low 
thermal expansion, and reduced deformation when compared 
to conventionally uniform materials. Therefore, composites 
can be described as  efficient materials produced by combining 
reinforcement and matrix components in a way that they do not 
dissolve or become incompatible, preserving their individual 
properties while working together to offer improved performance. 
However, the downsides of Composite materials are more expensive 
and less recyclable. . Additionally, some composites may display 
anisotropic mechanical properties and degrade when exposed to 
high humidity and temperature over time. [15]Any 3D printing 
process must begin with a 3D digital model. There are several 3D 
design programmes that may be used to make this model. 

The model is “sliced” into layers in these programmes so that 
it can be sent to the 3D printer. Then, based on the model’s shape 
and the printing technique, the printer applies material layer by 
layer. There are numerous 3D printing technologies available, 
and each one produces the finished product using a different set 
of materials and techniques. Various plastics, metals, ceramics, 
and sand powder are common materials; plastic, particularly ABS 
and PLA, is the most often used. 3D printing requires a variety 
of methods, procedures, and materials to produce the intended 
results, even though there isn’t a single, universally applicable 
solution. The Mark Two printer’s usage of fused deposition 
modelling, or FDM, is the main topic of this introduction. One of 
the most straightforward and well-known 3D printing techniques, 
FDM, applies plastic filament layer by layer onto a platform after 
melting it with a hot extrusion head.  [16]Rapid prototyping 
systems are increasingly popular technologies that allow using 
a range of materials to produce small batches and prototypes. 
Rapid developments targeted at lowering the cost of materials and 
equipment have resulted from the popularity of these technologies. 
Machines made using this technology do have certain limitations, 
though. A major issue is that users are often required to purchase 
expensive proprietary filaments, typically only available from the 
machine’s manufacturer. These filaments are packaged with a chip 
containing a unique, non-computable ID, which the 3D printer 
reads to identify the type of material. The printer can then estimate 
the production volume possible with the specific coil based on the 
ID and other measurements.From the perspective of optimizing 
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processing parameters, automatically adjusting material and 
nozzle temperatures, as well as the rate of filament deposition, 
based on coil ID recognition, offers significant advantages. 
However, the comparatively high monopolistic filament pricing, 
which are set by the machine manufacturers, limit the use of 3D 
printers and prevent a free market for semi-products made using 
FDM technology.

 The RepRap community, on the other hand, advocates for 
an open system that lets users use a large range of materials and 
filaments without any limitations imposed by the manufacturers 
of the machines. This method allows for the use of a wider variety 
of materials while lowering their cost. The primary advantages 
of these cutting-edge materials are their attractive look, special 
qualities, and the possibility of much cheaper costs, contingent 
on the percentage of natural content. [17]DIW is capable of 
producing complex 3D shapes by creating a paste with regulated 
flow characteristics. The creation of viscoplastic, self-healing inks 
that flow readily under shear and recover rapidly after deposition 
is one of its main obstacles. In order to develop inks that can 
handle a variety of materials, researchers look for adaptable 
techniques. This work presents a DIW-applicable system based 
on the supramolecular interactions between triethanolamine and 
ammonium oleate. Rubber, plastic, ceramic, metal, and composites 
are just a few of the materials that can be printed utilising the 
shear-thinning DIW approach thanks to the ink system. More 
than 80% of the ink is solid, which inhibits the formation of 
porous structures and dimensional changes after printing. Multi-
material sensors were successfully created using the established 
DIW approach for real-time health monitoring. This method 
might provide a fresh approach to creating 3D printing materials 
for a variety of useful uses. Because it does not require assembly, 
3D printing, sometimes referred to as additive manufacturing, 
is essential to sustainable production because it reduces waste, 
energy use, and production time. It also makes it possible to mass 
customise complicated gadgets. DIW is the most adaptable of them 
because of its. [18]Epoxy resins are reactive substances that begin 
with low viscosity and progressively rise as the reaction proceeds 
at room temperature, in contrast to earlier ink formulations that 
solidify by gelation, drying, or spontaneous photopolymerization. 
To finish the polymerization process, these inks must be thermally 
cured for several hours at high temperatures (100–220°C). 

We created epoxy-based inks with and without highly 
anisotropic additives that have the proper viscoelasticity and long 
pot life. In particular, we used dimethyl methyl phosphonate, 
nano-clay platelets, and Epon 826 epoxy resin to manufacture 
the base inks (DMMP).  The uncured ink exhibits shear thinning 
behaviour and a shear yield stress due to the rheology modifiers 
of the nano-clay platelets (1 nm thick; 100 nm long), while 
DMMP reduces the initial viscosity of the resin to allow for larger 
solids loading. Additionally, these chemicals aid in enhancing 
the cured epoxy matrix’s mechanical qualities. During printing, 
the shear and extensional forces in the micronozzle cause these 
high aspect ratio fillers to align. [19]There is a growing sense 
of interdependence between advancements in 3D printing 
technology, materials science, and digital design tools. New 
materials, such as metals, composites, and advanced polymers, are 
improving the versatility and durability of 3D printed products. 
These continuous technological advancements are not only 
expanding the possibilities of 3D printing but also increasing its 
accessibility for a larger group of people , fostering innovation 
and making people feel involved in these technical breakthroughs. 

Composites, due to their superior properties over traditional 
materials, are gaining significant attention across various 
industries. When two or more materials with dissimilar physical 
or chemical properties are combined characteristics, composites 
can exhibit enhanced features that individual components cannot. 
These benefits include increased durability, reduced weight, 
improved insulation, and greater chemical resistance. As a result, 
composites are frequently employed in domains like sports. 
equipment, aerospace, automotive, and construction, offering 
long-lasting, low-maintenance, and high-performance solutions. 
the growing importance of composite materials in various sectors, 
driven by the push for efficiency and sustainability in production. 
For instance, carbon fibre-reinforced polymers (CFRPs) have 
revolutionized the manufacturing of airplane components, offering 
advantages like weight reduction, improved fuel efficiency, and 
lower carbon emissions. Similarly, composites are used in making 
lighter, more energy-efficient cars that meet stringent safety 
standards. Composites are also playing a important part in the 
field of renewable energy , particularly in the creation of stronger, 
lighter wind turbine blades that maximize energy output while 
withstanding harsh environmental conditions. [20]

Material and Methods 
 Material

1. Printing Speed (mm/s)
One of the most important factors in the 3D printing process 

is the printing speed, or the pace at which material is extruded 
and placed onto the build platform. When it comes to composite 
materials, the printing speed has an impact on a number of final 
product characteristics, such as surface finish, layer adhesion, 
and the printed object’s overall structural integrity. The standard 
unit of measurement for printing speed is millimetres per second 
(mm/s). A faster printing speed reduces the overall print time, 
making production more efficient. However, increasing the speed 
too much can lead to issues such as under-extrusion, poor layer 
bonding, or uneven deposition of the material. For composite 
materials, this is especially important because the filler material 
(e.g., carbon fibers or glass fibers) must be well-distributed and 
adequately bonded to the polymer matrix to achieve the desired 
mechanical properties. If the speed is too high, the material may 
not have enough time to properly bond between layers, resulting in 
weak spots or delamination.On the other hand, printing at a slower 
speed allows more time for each layer to adhere properly, ensuring 
a higher-quality surface finish and improved bonding. However, 
this increases the overall print time, which may be undesirable for 
high-volume production. Therefore, the optimal printing speed 
must balance print quality and time efficiency, and it typically 
depending on the part’s complexity and the particular composite 
material being used and the desired mechanical properties.

2. Nozzle Temperature (°C)
One of the most crucial factors in 3D printing composite materials 

is nozzle temperature.  The nozzle temperature determines how 
easily the material flows through the printer’s extruder, affecting 
the consistency of the extrusion and the adhesion between layers. 
For composite filaments, which contain a mix of base polymers and 
reinforcing fillers, nozzle temperature is essential for guaranteeing 
that the polymer matrix and the filler material extrude smoothly 
and bond effectively.The temperature range for most composite 
filaments is between 190°C and 250°C, based on the kind of material 
being utilised . For example, PLA-based composite filaments 
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typically require a lower temperature (around 190°C to 210°C), 
while filaments with higher-performance thermoplastics like ABS, 
PETG, or nylon require higher temperatures (210°C to 250°C).
The polymer matrix might not melt if the nozzle temperature is 
set too low. adequately, leading to poor layer adhesion, incomplete 
extrusion, or even clogging of the nozzle. Conversely, excessively 
high temperatures can cause thermal degradation of both the base 
polymer and the filler material, which can result in weak parts, 
loss of strength, or unwanted surface defects. For composite 
materials with carbon fibers or glass fibers, controlling the nozzle 
temperature is especially important, as these fillers can degrade at 
high temperatures, reducing the material’s reinforcing effect and 
impacting the final part’s mechanical properties.

3. Filler Material (%)
The percentage of filler material in a composite filament has 

effects directly on the mechanical properties, such as strength, 
stiffness, wear resistance, and thermal conductivity. Fillers 
like carbon fibers, glass fibers, or metal powders are added 
to the polymer matrix to enhance its performance in specific 
applications. The filler material acts as reinforcement, providing 
strength and rigidity to the 3D-printed part, making it more 
suitable for demanding structural applications.In general, the 
more filler material present in the composite, the stronger and 
more rigid the printed part becomes. Carbon fiber-reinforced 
composites, for example, can achieve significant improvements 
in tensile strength, stiffness, and durability, making them ideal for 
aerospace, automotive, and industrial applications. However, the 
filler content must be carefully controlled. High filler percentages 
(e.g., 30% to 50%) can improve strength but may make the filament 
more difficult to print. High filler content can increase the viscosity 
of the material, causing extrusion problems such as clogging or 
inconsistent flow, and may also reduce the layer bonding, leading 
to weaker parts.The optimal filler material percentage depends on 
the desired mechanical properties and the specific application. For 
example, a 10% to 30% carbon fiber load typically offers a good 
balance between printability and material strength, whereas for 
more demanding applications requiring extreme strength, higher 
filler percentages may be required. It’s essential to adjust other 
printing factors, like nozzle temperature and printing speed, to 
accommodate the increased viscosity and ensure proper material 
flow.

4.Tensile Strength (MPa)
The amount of force a material can bear before breaking 

when stretched is known as its tensile strength. It is among the 
most crucial mechanical characteristics of composite materials, 
especially when it comes to applications. where structural 
integrity and load-bearing capacity are critical. Tensile strength 
is typically measured in megapascals (MPa) and varies widely 
based on the processing conditions and the composition of the 
material.For 3D-printed composite materials, tensile strength 
is influenced by several factors, including the base polymer, the 
type and percentage of filler material, the printing parameters, 
and post-processing techniques. In general, composite materials 
with higher filler content, such as carbon fiber or glass fiber, 
exhibit significantly higher tensile strength compared to unfilled 
polymers. Carbon fiber composites, for example, can achieve 
tensile strengths upwards of 100 MPa is far greater than that of 
typical 3D printing. plastics like PLA or ABS. However, achieving 
high tensile strength requires more than just increasing the filler 
percentage. The printing process itself has a major impact on the 

printed part’s ultimate mechanical characteristics. Proper layer 
bonding is essential for achieving the maximum tensile strength. 
The layers may not bond well if the printing speed is too high or 
the nozzle temperature is too low, creating weak spots that lower 
the part’s tensile strength. Additionally, by strengthening the 
crystalline structure of the polymer matrix and strengthening the 
link between layers, post-processing methods like annealing or 
curing can increase tensile strength. 
Machine Learning Algorithms

Ada Boost Regression
AdaBoost (Adaptive Boosting) is a famous ensemble learning 

technique that is commonly used for classification tasks, but it 
can also be used to solve regression problems using AdaBoost 
Regression. The core principle of AdaBoost is to combine 
numerous weak learners (models that perform marginally better 
than random chance) to create a stronger learner, hence enhancing 
predicting performance. AdaBoost focuses on iteratively improving 
the performance of weak models by prioritizing data points that 
are difficult to anticipate. AdaBoost works in regression by fitting a 
sequence of regressors to training data and modifying the model’s 
weights to reduce errors with each iteration.

AdaBoost Regression begins with a rudimentary model, such as 
a decision tree with limited depth (also known as a stump), then 
repeatedly modifies it based on prior models’ residuals. Initially, 
each data point is given identical weight. During each iteration, 
the method applies a weak learner to the data, and points that are 
poorly predicted (i.e., have significant residual errors) are given 
greater weight. This forces succeeding weak learners to concentrate 
more on difficult-to-predict situations. The final prediction is the 
weighted sum of all the weak learners’ guesses.

The process starts with an initial model, and each successive 
model corrects flaws created by earlier models. This is accomplished 
by weighting the predictions of all weak learners, with more 
correct models having greater influence. The weight update for 
each data point is determined by the model’s error rate; if a data 
point is predicted wrongly, its weight is increased so that it receives 
more attention in the following iteration. Conversely, if a point is 
successfully anticipated, its weight decreases. This adaptive process 
continues for a predetermined number of iterations, or until no 
more improvements can be produced.

In AdaBoost Regression, the final prediction is calculated by 
aggregating the predictions of all weak learners, weighted by their 
performance. The theory is that, while each individual model is 
poor, the ensemble as a whole is much stronger and can generate 
extremely accurate predictions. One of AdaBoost’s primary 
advantages is its ability to properly manage the bias-variance 
tradeoff: while individual weak learners may have significant 
bias, the ensemble model minimizes variance by focusing on 
challenging cases.

AdaBoost Regression’s hyperparameters include the number of 
estimators (the number of weak learners to be trained), the learning 
rate (which governs how much each weak learner contributes to 
the final prediction), and the type of weak learner to utilize. The 
most popular option is decision trees, but any regressor can be 
used as the weak learner. The learning rate determines how much 
influence each individual weak learner has on the final model—
lower learning rates make the model more resistant to overfitting, 
whereas higher learning rates can accelerate the learning process 
but may lead to overfitting if not carefully managed.
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One of the most significant advantages of AdaBoost Regression 
is its ability to increase model performance without requiring 
considerable hyperparameter adjustment. It can also handle noisy 
datasets well because the algorithm focuses on more difficult 
samples rather than overfitting to easy ones. However, AdaBoost 
is susceptible to noisy data and outliers. Because the method 
gives higher weights to misclassified data points, outliers can 
disproportionately affect the model, resulting in overfitting.

Many machine learning packages, notably Scikit-learn, use 
AdaBoost, and the AdaBoostRegressor class makes it simple to 
apply the technique. It allows the user to select the base estimator 
(for example, the decision tree regressor) as well as the number of 
estimators and learning rate.

By concentrating on the mistakes of earlier rounds, the ensemble 
technique known as AdaBoost Regression increases the prediction 
ability of weak models. Although it is a strong technique that can 
greatly increase regression model accuracy, obtaining the best 
results requires close attention to hyperparameters and outlier 
control.

MLP Regressor
An artificial neural network (ANN) called a Multi-Layer 

Perceptron (MLP) Regressor is used for supervised learning 
tasks, especially regression issues where the objective is to predict 
continuous values. It can learn intricate non-linear correlations 
between input data and target values and is a member of the 
feedforward neural network class. An input layer, one or more 
hidden layers, and an output layer are among the several layers 
of neurons that make up an MLP Regressor. A completely linked 
network is created when every neuron in one layer is coupled to 
every other neuron in the layer above it. In MLP, backpropagation 
and an optimization method like Adam or Stochastic Gradient 
Descent (SGD) are used to modify the weights of connections 
between neurons during the learning process.

The MLP Regressor is appropriate for use in fields needing 
advanced predictive models, such as engineering, healthcare, and 
finance, due to its capacity to approximate complex functions. By 
introducing non-linearity, the hidden layers’ activation functions—
such as Tanh, Sigmoid, or ReLU (Rectified Linear Unit)—allow the 
network to recognize complex patterns in the data. In regression 
issues, the output layer usually employs a linear activation function 
because the objective is to predict continuous values instead of 
categorical labels.

The number of hidden layers and neurons per layer, learning 
rate, batch size, and regularization strategies like L2 penalty (weight 
decay) to avoid overfitting are some of the hyperparameters 
that must be considered when training an MLP Regressor. The 
possibility of overfitting is one of the difficulties in training 
MLP models, particularly if the network is extremely deep or 
complicated in comparison to the data at hand. Techniques like 
dropout, early halting, and cross-validation are frequently used to 
lessen this. Additionally, because MLP models are sensitive to the 
scale of input features, feature scaling (such as standardization or 
normalization) is essential prior to training.

Highly non-linear correlations can be captured using MLP 
Regressor in contrast to more conventional regression techniques 
like Linear Regression or Decision Trees. Nevertheless, it 
necessitates additional computational power and meticulous 
hyperparameter adjustment. MLPs do not automatically provide 
feature importance, in contrast to ensemble approaches like 

Random Forest or Gradient Boosting; nevertheless, model 
predictions can be interpreted using methods like SHAP (SHapley 
Additive exPlanations) or permutation importance.

Several machine learning libraries, such as Scikit-learn, 
TensorFlow, and PyTorch, incorporate the MLP Regressor. The 
MLPRegressor from sklearn.neural_network in Scikit-learn 
offers a user-friendly implementation with adaptable settings like 
hidden_layer_sizes, activation, solver, and regularization alpha. 
Feeding input data, calculating forward runs through the network, 
calculating loss using a cost function such as Mean Squared Error 
(MSE), and changing weights via backpropagation are all steps in 
the training process.

Notwithstanding its benefits, the MLP Regressor has drawbacks, 
including high processing overhead, a need for substantial data sets 
for efficient training, and sensitivity to hyperparameter selections. 
Simpler models like Decision Trees or Linear Regression may be 
better in situations where explainability is crucial. Nevertheless, 
MLP Regressor is a popular technique in fields like financial 
modeling, time series forecasting, and predictive analytics and 
may be an effective tool for handling challenging regression tasks 
with the right tuning and enough data.

Gaussian Process Regressor
For regression tasks, a non-parametric machine learning 

approach called the Gaussian Process Regressor (GPR) is 
employed. GPR is based on a probabilistic framework that makes 
fewer assumptions and provides a distribution over potential 
functions that fit the data, in contrast to conventional regression 
techniques like linear or polynomial regression, which assume the 
form of the underlying function (e.g., linear or quadratic). This 
makes it particularly helpful for applications with sparse data or 
complex and ambiguous relationships between input features and 
the target variable. In the subject of Bayesian machine learning, 
where the objective is to measure the uncertainty of predictions in 
addition to making predictions, Gaussian processes are a potent 
tool.

A mean function and a covariance function, often known as 
a kernel, together characterize the distribution of functions and 
form a Gaussian process. A Gaussian process establishes a prior 
across the space of potential functions that could account for the 
data in the context of regression. The covariance function, also 
known as the kernel, establishes the smoothness and correlation 
of the functions in the input space, whereas the mean function 
usually indicates the predicted value of the target variable. Since 
it determines how similar various input points are to one another, 
the kernel function is an essential component in Gaussian process 
modeling. The Radial Basis Function (RBF) kernel, which makes 
the assumption that data points change smoothly and continuously, 
and the Matérn kernel, which offers greater flexibility in terms of 
smoothness.

The hyper parameters of the kernel function, which control how 
input points affect one another, are learned during the training 
phase of Gaussian process regression. Usually, to do this, the 
marginal likelihood—the probability of the observed data under 
the model—is maximized. In addition to making predictions, 
the Gaussian process also calculates the degree of uncertainty in 
those forecasts. The model forecasts a Gaussian distribution with 
a mean and a variance over all potential output values for any new 
input. As a gauge of uncertainty, the variance shows how certain 
the model is of its forecast. One of the main benefits of Gaussian 
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process regression over alternative techniques is its capacity to quantify uncertainty, which can be extremely important in decision-
making processes, particularly in sectorslike robotics, engineering, and finance.

Bayesian inference, which updates the prior distribution (the Gaussian process) to a posterior distribution in light of observed data, is 
the mathematical basis of Gaussian process regression. This procedure enables the model to update its assumptions in response to new 
data points and take into account past information about the system. To determine the most likely function that fits the data, the posterior 
distribution is usually calculated analytically or numerically using techniques like the Laplace approximation or Markov Chain Monte 
Carlo (MCMC).

Gaussian process regression works particularly well in situations where the underlying function is unknown, extremely nonlinear, 
and costly to assess. For example, in robotics, GPR may be used to describe and anticipate the behavior of a robot interacting with its 
environment, while measuring the uncertainty of such predictions, which helps the robot make better educated decisions. It can be used 
to model geographic data in geostatistics, for example, by using adjacent observations to forecast the temperature at unmeasured sites. In 
a similar vein, GPR can forecast future points in time series while estimating the degree of uncertainty in those forecasts.

There are a number of drawbacks to Gaussian process regression. Its computational complexity is a major disadvantage, particularly 
when working with big datasets. For datasets with more than a few thousand points, GPR is computationally costly because the training 
time grows cubically with the amount of data points. To overcome this, different approximation strategies, such as sparse Gaussian 
processes or inducing points, have been proposed to speed up the computation. Additionally, because the covariance matrix needed for 
inference gets bigger and harder to invert, GPR may have trouble with high-dimensional data.

The GaussianProcessRegressor class in Python’s Scikit-learn module offers a user-friendly method for putting this model into practice. 
The kernel function can be chosen from a variety of pre-defined choices or tailored for specific needs. To choose the optimal kernel 
parameters, hyperparameters are often learned by cross-validation or a procedure known as maximum likelihood estimation.

A versatile, probabilistic method for modeling and forecasting continuous variables, the Gaussian Process Regressor is an effective 
tool for regression applications. One of its main advantages is that it can quantify uncertainty, which makes it perfect for applications 
where uncertainty is just as crucial as the actual forecast. It is most appropriate for smaller datasets or particular applications where these 
trade-offs are tolerable, nevertheless, due to its computational limits. GPR is still among the machine learning toolkit’s most reliable and 
understandable regression techniques in spite of these difficulties.

Result and Discussion

Table 1. 3D printing of composite materials
Printing Speed (mm/s) Nozzle Temperature (°C) Filler Material (%) Tensile Strength (MPa)

50 200 10 42
60 220 15 48
40 190 20 50
70 210 5 38
55 230 25 52
65 205 12 45
45 215 18 49
50 195 22 51
55 225 8 44
60 200 10 46
52 205 16 47
63 215 12 43
58 220 18 49
47 190 20 50
68 210 6 39
53 200 14 48
62 230 26 53
41 195 22 51
50 220 13 44
60 210 17 47
49 225 24 50
57 205 18 48
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65 215 9 43
55 190 23 52
61 210 14 46
46 200 21 50
59 220 11 42
52 205 25 53
62 215 19 50
43 195 24 49

Table 1 presents data on the 3D printing of composite materials, detailing the effects of various printing parameters on the tensile 
strength of the printed material. The parameters include printing speed (in mm/s), nozzle temperature (in °C), filler material percentage, 
and the resulting tensile strength (in MPa). Each entry in the table represents a combination of these parameters, providing insights 
into how they influence the mechanical properties of the printed composites. Printing speed ranges from 40 to 70 mm/s, indicating 
a variability in the rate at which material is extruded during printing. Nozzle temperature varies between 190°C and 230°C, affecting 
the flow and bonding of the material. Filler material percentage, ranging from 5% to 26%, represents the proportion of reinforcement 
(such as carbon fiber, glass fiber, or other fillers) mixed with the base material, which significantly affects the composite’s strength and 
durability. Finally, tensile strength values, which range from 38 MPa to 53 MPa, provide a measure of the material’s resistance to breaking 
under tension. The data suggests a trend where higher filler material percentages tend to result in higher tensile strength, as seen with 
higher strength values like 53 MPa at 26% filler material. Similarly, nozzle temperature appears to influence tensile strength, with higher 
temperatures (such as 230°C) often leading to stronger materials. However, the relationship between printing speed and tensile strength 
is less straightforward. In some cases, faster printing speeds like 70 mm/s result in lower tensile strength (38 MPa), while moderate speeds 
(e.g., 60 mm/s or 50 mm/s) tend to achieve relatively stronger materials. the table demonstrates how careful optimization of printing 
speed, nozzle temperature, and filler material percentage is crucial for achieving high-performance composite materials in 3D printing. 
The ability to adjust these parameters allows for the production of customized materials suited for a variety of applications, balancing 
factors like strength, printability, and material cost.

Table 2. Descriptive Statistics
Printing Speed (mm/s) Nozzle Temperature (°C) Filler Material (%) Tensile Strength (MPa)

count 30.000000 30.000000 30.000000 30.000000
mean 55.100000 208.833333 16.566667 47.300000

std 7.962628 11.867322 6.049698 3.992666
min 40.000000 190.000000 5.000000 38.000000
25% 50.000000 200.000000 12.000000 44.250000
50% 55.000000 210.000000 17.500000 48.000000
75% 60.750000 218.750000 21.750000 50.000000
max 70.000000 230.000000 26.000000 53.000000

Table 2 presents the descriptive statistics for the data on 3D 
printing of composite materials. It includes key statistical measures 
such as the count, mean, standard deviation (std), minimum 
(min), 25th percentile (25%), 50th percentile (median or 50%), 
75th percentile (75%), and maximum (max) for the printing speed, 
nozzle temperature, filler material percentage, and tensile strength. 
The count for each variable is 30, indicating that the dataset consists 
of 30 observations for each of the four variables. The mean values 
show the average of each parameter: the mean printing speed is 55.1 
mm/s, the mean nozzle temperature is 208.83°C, the mean filler 
material percentage is 16.57%, and the average tensile strength is 
47.3 MPa. These values represent the central tendency of the data, 
offering an overview of typical conditions for the experiments. The 
standard deviation (std) quantifies the dispersion of the data from 
the mean. For example, the printing speed has a standard deviation 
of 7.96 mm/s, indicating a moderate variation around the average 
speed. Similarly, the standard deviation for tensile strength (3.99 
MPa) indicates that while the values are somewhat clustered 
around the mean, there is notable variability in the material’s 
strength across the dataset. The minimum (min) and maximum 

(max) values show the range of the data. The printing speed ranges 
from 40 mm/s to 70 mm/s, the nozzle temperature ranges from 
190°C to 230°C, the filler material percentage ranges from 5% 
to 26%, and the tensile strength ranges from 38 MPa to 53 MPa. 
These extreme values help identify the boundaries within which 
the data points fall. the percentiles (25%, 50%, and 75%) provide 
additional insights into the distribution of the data. For instance, 
at the 25th percentile, the printing speed is 50 mm/s, while at the 
75th percentile, it is 60.75 mm/s, indicating that a majority of the 
data points fall within this range. Similarly, the 50th percentile 
(median) for tensile strength is 48 MPa, suggesting that half of the 
tensile strengths are below this value, and half are above it.
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Effect of Process Parameters

Figure 1:  Scatter plot of the various 3D printing of composite materials process parameters 

The figure 2 displays a Scatter plot of the various 3D printing 
of composite materials process parameters, which is a visual 
representation of the relationships between multiple variables: 
Printing Speed (mm/s), Nozzle Temperature (°C), Filler Material 
(%), and Tensile Strength (MPa). Pairplots are useful for 
observing both individual distributions of variables and potential 
correlations between them. In the diagonal plots, histograms 
of each individual variable are shown, giving insight into their 
distributions. The Printing Speed histogram indicates a relatively 
uniform distribution between 40 mm/s and 70 mm/s. The Nozzle 
Temperature distribution has a central tendency around 210°C, 
with a slightly higher frequency of temperatures between 200°C 
and 220°C. The Filler Material histogram reveals a range of values 
between 5% and 26%, with a higher concentration around 20%. 
Lastly, the Tensile Strengthdistribution is somewhat symmetric, 
ranging from 38 MPa to 53 MPa, with a clustering of values between 
44 MPa and 51 MPa. Off-diagonal plots display scatter plots 
that reveal the relationships between pairs of variables. Notably, 
there seems to be a moderate positive correlation between Filler 
Material (%) and Tensile Strength (MPa). As the filler material 
percentage increases, tensile strength tends to rise as well, which is 
consistent with the general expectation that higher reinforcement 
improves the mechanical properties of composites. However, the 
relationship between Printing Speed and Tensile Strength does 
not show a clear trend, indicating that printing speed may not 

have a strong or consistent effect on tensile strength. Similarly, the 
correlation between Nozzle Temperature and Tensile Strength is 
less evident, although a slight positive trend is observable in some 
parts of the scatter plot.
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Figure 3:   Correlation heatmap between the process parameters and the responses
The figure 3 represents a correlation heatmap that quantifies the strength and direction of linear relationships between the process 

parameters (Printing Speed, Nozzle Temperature, Filler Material) and the response variable (Tensile Strength). A strong positive 
association is indicated by a correlation coefficient close to 1, a strong negative relationship is shown by a correlation coefficient close 
to -1, and little to no correlation is suggested by a correlation coefficient near 0. The heatmap’s colour gradient vividly highlights the 
strength and direction of these relationships. . Filler Material and Tensile Strength: The strongest positive correlation in the dataset is 
observed between Filler Material (%) and Tensile Strength (MPa), with a correlation coefficient of 0.94. This indicates a near-linear 
relationship where increasing the percentage of filler material significantly improves the tensile strength. This is expected in composite 
materials, as fillers often enhance mechanical properties. Printing Speed and Tensile Strength: A moderately strong negative correlation 
(-0.54) exists between Printing Speed (mm/s) and Tensile Strength (MPa). This suggests that higher printing speeds may compromise the 
tensile strength, likely due to reduced layer adhesion or improper material deposition at higher speeds.  Nozzle Temperature and Tensile 
Strength: The correlation between Nozzle Temperature (°C) and Tensile Strength (MPa) is weakly negative (-0.15), suggesting that nozzle 
temperature has minimal direct influence on tensile strength within the range considered. However, it may interact with other factors, 
such as filler material or speed, in more complex ways.  Printing Speed and Nozzle Temperature exhibit a moderate positive correlation 
(0.44), implying that higher speeds may often coincide with elevated nozzle temperatures, potentially due to process optimization settings. 
A significant negative correlation (-0.57) is observed between Printing Speed and Filler Material, indicating that lower printing speeds 
are often paired with higher filler material percentages, which may be necessary to maintain quality and precision during the printing 
process. Nozzle Temperature and Filler Material show a weak negative correlation (-0.12), indicating minimal interaction between these 
parameters.

Figure 4:  Predictive performance of the Ada Boost Regression predictive model in 3D printing of composite materials (a) train; (b) test.
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Figure 4 (a) illustrates the predictive performance of the AdaBoost regression model on the training dataset for 3D printing composite 
materials. In this context, the graph typically plots the actual versus predicted values, providing a visual measure of how well the model 
captures the underlying relationships between the input features (such as printing parameters, material composition, etc.) and the output 
properties of the printed composite. The AdaBoost algorithm, by design, combines multiple weak learners—often simple decision trees—
into a single, robust predictor. In the training phase, the model iteratively adjusts its weights, focusing on data points that were previously 
mispredicted. The resulting performance, as shown in the figure, indicates a high degree of correlation between the predicted and 
actual outcomes, suggesting that the AdaBoost regression effectively models complex interactions inherent in the 3D printing process. 
Moreover, the model’s strong training performance is an encouraging sign, as it demonstrates the ability to learn intricate patterns from 
the composite materials data. This capability is critical for optimizing the 3D printing process, where accurate predictions of material 
behavior can lead to improved manufacturing precision and efficiency.

Figure 4(b) displays the predictive performance of the AdaBoost regression model on the test dataset for 3D printing of composite 
materials. Unlike the training phase, where the model is optimized to capture the underlying relationships within the data, the test phase 
evaluates the model’s generalizability on unseen data. In this figure, the comparison between predicted and actual outcomes demonstrates 
the model’s robustness and its ability to accurately predict material properties based on the input features. A strong correlation in the 
test results suggests that the AdaBoost model, through its iterative weighting of weak learners, successfully mitigates overfitting, thereby 
preserving its predictive accuracy beyond the training dataset. the performance in the test phase reinforces the reliability of the model 
when applied to real-world scenarios. By accurately forecasting the behavior of composite materials during 3D printing, the model 
supports process optimization and enhances the decision-making process. The results, therefore, validate the effectiveness of AdaBoost 
regression in handling complex and nonlinear relationships within composite materials data, ultimately contributing to improved 
efficiency and precision in additive manufacturing applications.

Figure 5:  Predictive performance of the MLP Regressor predictive model in3D printing of composite materials a) train b) test

The scatter plot in Figure 5 presents the predictive performance of a Multilayer Perceptron (MLP) Regressor in estimating the tensile 
strength (MPa) of 3D-printed composite materials using training data. The x-axis represents the actual tensile strength, while the y-axis 
represents the predicted tensile strength. The dashed diagonal line represents an ideal prediction scenario, where the predicted values 
would exactly match the actual values. However, the data points are mostly clustered below this diagonal, indicating that the model 
systematically underestimates tensile strength. Additionally, the spread of points suggests some level of prediction variance, which may 
indicate that the model has not yet fully captured the underlying material properties influencing tensile strength. This could be due to 
factors such as insufficient training data, inadequate feature selection, or overfitting to specific material characteristics. Further model 
tuning, feature engineering, or additional data collection may improve prediction accuracy.

The scatter plot in Figure 5(b) illustrates the predictive performance of the Multilayer Perceptron (MLP) Regressor in estimating the 
tensile strength (MPa) of 3D-printed composite materials using testing data. The x-axis represents the actual tensile strength, while 
the y-axis represents the predicted tensile strength. The dashed diagonal line denotes the ideal case where predictions perfectly match 
actual values. However, the limited number of data points suggests that the test dataset is relatively small. The observed predictions show 
a significant underestimation, as most points are located well below the diagonal, particularly for higher tensile strength values. This 
indicates that the model struggles to generalize effectively when applied to unseen data, potentially due to overfitting to the training 
set, insufficient training data, or inadequate feature representation. The discrepancy between actual and predicted values implies that 
the model may require further optimization, hyperparameter tuning, or additional training data to improve its predictive accuracy and 
robustness. Addressing these issues is crucial to enhancing the reliability of MLP-based predictive models for 3D-printed composite 
materials.
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Figure 6:  Predictive performance of the Gaussian Process Regressor predictive model in3D printing of composite materials a) train b) 
test

The scatter plot in Figure 6(a) illustrates the predictive performance of a Gaussian Process Regressor (GPR) in estimating the tensile 
strength (MPa) of 3D-printed composite materials using training data. The x-axis represents the actual tensile strength, while the y-axis 
represents the predicted tensile strength. The dashed diagonal line signifies the ideal scenario where predictions perfectly match actual 
values. The data points lie almost exactly on this diagonal, indicating that the GPR model has achieved near-perfect accuracy on the 
training dataset. This suggests that the model has memorized the training data, exhibiting zero or negligible error. However, such a 
perfect fit may indicate overfitting, meaning the model may not generalize well to unseen testing data. Overfitting often occurs when 
a model learns not just the underlying pattern but also the noise in the training data, leading to poor performance on new data. To 
address this, techniques such as cross-validation, hyperparameter tuning, or regularization could be employed. Despite this concern, the 
Gaussian Process Regressor appears highly effective at learning the relationship between input features and tensile strength, making it a 
potentially powerful tool for predicting mechanical properties of 3D-printed composites.

The scatter plot in Figure 6(b) illustrates the predictive performance of a Gaussian Process Regressor (GPR) in estimating the tensile 
strength (MPa) of 3D-printed composite materials using testing data. The x-axis represents the actual tensile strength, while the y-axis 
represents the predicted tensile strength. The dashed diagonal line represents an ideal prediction scenario where the model’s predictions 
match the actual values perfectly.In contrast to the training data results, where the GPR model exhibited near-perfect accuracy, the 
test data predictions show some deviations from the diagonal. While two points remain relatively close to the ideal line, one point is 
noticeably overestimated, indicating that the model is not generalizing as well on unseen data. This suggests that the model may have 
overfitted to the training dataset, capturing noise rather than general patterns. Overfitting can reduce the model’s ability to make accurate 
predictions on new data, which is critical for real-world applications. To improve generalization, techniques such as regularization, 
optimizing kernel parameters, or increasing the diversity of training data can be applied. Despite these minor discrepancies, the GPR 
model still demonstrates a strong predictive capability, making it a promising approach for modeling mechanical properties of 3D-printed 
composites.

Table 3. Regression Model Performance Metrics (Training Data)
Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Train ABR AdaBoost 

Regression
0.980235 0.980241 2.95E-01 5.43E-01 4.13E-01 1.09E+00 1.36E-04 5.00E-01

Train MLP Multi-layer 
Perceptron

-21.1555 -4.66082 3.30E+02 1.82E+01 1.63E+01 2.90E+01 2.71E-01 1.74E+01

Train GPR Gaussian 
Process 
Regression

1 1 1.21E-16 1.10E-08 7.94E-09 2.73E-08 5.97E-20 4.24E-09

Table 3 presents the performance metrics of three regression 
models AdaBoost Regression (ABR), Multi-Layer Perceptron 
(MLP), and Gaussian Process Regression (GPR) on the training 
dataset for predicting the tensile strength of 3D-printed composite 
materials. The AdaBoost Regression (ABR) model demonstrates 
strong performance with an R² value of 0.9802, indicating that it 
explains 98% of the variance in the training data. It has a relatively 
low Mean Squared Error (MSE) of 0.295, and the Root Mean 

Squared Error (RMSE) of 0.543 MPa, suggesting small prediction 
errors. The MLP model performs very poorly on training data, as 
indicated by its negative R² (-21.1555), meaning it fails to explain 
the variance and significantly deviates from the actual values. 
Its MSE (330 MPa²) and RMSE (18.2 MPa) are extremely high, 
confirming poor performance. The Gaussian Process Regression 
(GPR) model achieves a perfect R² of 1, indicating zero error on 
training data. Its MSE (1.21E-16) and RMSE (1.10E-08 MPa) are 
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almost negligible, signifying overfitting, where the model has memorized training data instead of generalizing patterns. While GPR excels 
in training, its real-world performance should be validated on test data to check for overfitting issues.

Table 4. Regression Model Performance Metrics (Testing Data)
Data Symbol Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE
Test ABR AdaBoost 

Regression
-0.20089 0.883929 5.60E+00 2.37E+00 2.25E+00 3.25E+00 2.14E-

03
2.00E+00

Test MLP Multi-layer 
Perceptron

-131.258 -4.16077 6.17E+02 2.48E+01 2.44E+01 3.13E+01 5.08E-
01

2.12E+01

Test GPR Gaussian 
Process 
Regression

-35.4485 -14.8906 1.70E+02 1.30E+01 1.14E+01 1.64E+01 8.34E-
02

1.53E+01

Table 4 presents the performance metrics of AdaBoost Regression (ABR), Multi-Layer Perceptron (MLP), and Gaussian Process 
Regression (GPR) on the testing dataset for predicting tensile strength in 3D-printed composite materials. The AdaBoost Regression 
(ABR) model exhibits moderate generalization performance, with an R² of -0.2009, indicating poor predictive power on test data. Despite 
this, its Explained Variance Score (EVS) of 0.8839 suggests that it captures some variance. The MSE (5.6 MPa²) and RMSE (2.37 MPa) 
indicate reasonable error margins, though its MaxError (3.25 MPa) suggests occasional large deviations. The MLP model performs 
extremely poorly on test data, with an R² of -131.258, signifying a complete failure in prediction. Its MSE (617 MPa²) and RMSE (24.8 
MPa) confirm significant errors, meaning the model is highly unreliable. This suggests that the MLP model was unable to generalize 
patterns from training data. The GPR model, which performed perfectly in training, exhibits severe overfitting in testing, with an R² of 
-35.4485 and MSE of 170 MPa². Its RMSE (13 MPa) and MAE (11.4 MPa) indicate substantial prediction errors, proving that the model 
has memorized training data rather than learning generalized patterns. Overall, none of the models generalize well to unseen data, with 
MLP and GPR performing worst, while ABR shows the most stable, albeit suboptimal, performance.

Conclusion
 The complex interactions between 3D printing process 

parameters and the mechanical properties of composite materials 
using advanced machine learning regression techniques. The 
research demonstrated the critical importance of carefully 
controlling printing parameters such as printing speed, nozzle 
temperature, and filler material percentage in determining the 
tensile strength of 3D-printed composites. The correlation analysis 
revealed a strong positive relationship between filler material 
percentage and tensile strength, highlighting the significant role 
of reinforcement materials in enhancing mechanical properties. 
Three machine learning models—AdaBoost Regression, Multi-
Layer Perceptron  (MLP) Regressor, and Gaussian Process 
Regressor—were employed to predict tensile strength. Each 
model exhibited distinct performance characteristics, with notable 
challenges in generalization. The AdaBoost Regression model 
showed the most stable performance, capturing approximately 
88% of variance in the test dataset, while the MLP and Gaussian 
Process Regression models suffered from severe overfitting, 
demonstrating poor generalization to unseen data. The findings 
underscore the complexity of predicting mechanical properties in 
3D-printed composite materials. The near-perfect performance 
of the Gaussian Process Regressor on training data, followed by 
significant errors on testing data, illustrates the critical need for 
robust model validation and careful feature engineering. This 
suggests that machine learning models must be meticulously 
developed, with particular attention to preventing overfitting 
and ensuring genuine predictive capabilities. Key insights from 
the research include the nuanced relationships between printing 
parameters. While increasing filler material percentage consistently 
improved tensile strength, the effects of printing speed and nozzle 
temperature were more complex.

 The negative correlation between printing speed and tensile 
strength suggests that higher speeds can compromise material 
integrity, likely due to reduced layer adhesion and improper material 

deposition. The study contributes significantly to the understanding 
of 3D printing of composite materials by demonstrating the 
potential and limitations of machine learning techniques in 
predicting material properties. The research highlights the need for 
sophisticated modeling approaches that can capture the intricate 
interactions between processing parameters and resulting material 
characteristics. Future research should focus on developing more 
robust machine learning models with improved generalization 
capabilities. This may involve collecting larger, more diverse 
datasets, implementing advanced regularization techniques, and 
exploring hybrid modeling approaches that combine multiple 
machine learning algorithms. Additionally, investigating more 
sophisticated feature engineering methods and exploring other 
advanced regression techniques could provide deeper insights 
into the complex relationships governing 3D-printed composite 
materials. Ultimately, this research provides valuable insights for 
materials scientists, engineers, and researchers working in additive 
manufacturing, offering a data-driven approach to understanding 
and optimizing the 3D printing process for composite materials. 
The findings contribute to the ongoing advancement of 3D printing 
technology, supporting the development of more sophisticated, 
high-performance composite materials for various industrial 
applications.

Conclusion
 The complex interactions between 3D printing process 

parameters and the mechanical properties of composite materials 
using advanced machine learning regression techniques. The 
research demonstrated the critical importance of carefully 
controlling printing parameters such as printing speed, nozzle 
temperature, and filler material percentage in determining the 
tensile strength of 3D-printed composites. The correlation analysis 
revealed a strong positive relationship between filler material 
percentage and tensile strength, highlighting the significant role 
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of reinforcement materials in enhancing mechanical properties. 
Three machine learning models—AdaBoost Regression, Multi-
Layer Perceptron  (MLP) Regressor, and Gaussian Process 
Regressor—were employed to predict tensile strength. Each 
model exhibited distinct performance characteristics, with notable 
challenges in generalization. The AdaBoost Regression model 
showed the most stable performance, capturing approximately 
88% of variance in the test dataset, while the MLP and Gaussian 
Process Regression models suffered from severe overfitting, 
demonstrating poor generalization to unseen data. The findings 
underscore the complexity of predicting mechanical properties in 
3D-printed composite materials. The near-perfect performance 
of the Gaussian Process Regressor on training data, followed by 
significant errors on testing data, illustrates the critical need for 
robust model validation and careful feature engineering. This 
suggests that machine learning models must be meticulously 
developed, with particular attention to preventing overfitting 
and ensuring genuine predictive capabilities. Key insights from 
the research include the nuanced relationships between printing 
parameters. While increasing filler material percentage consistently 
improved tensile strength, the effects of printing speed and nozzle 
temperature were more complex.

 The negative correlation between printing speed and tensile 
strength suggests that higher speeds can compromise material 
integrity, likely due to reduced layer adhesion and improper material 
deposition. The study contributes significantly to the understanding 
of 3D printing of composite materials by demonstrating the 
potential and limitations of machine learning techniques in 
predicting material properties. The research highlights the need for 
sophisticated modeling approaches that can capture the intricate 
interactions between processing parameters and resulting material 
characteristics. Future research should focus on developing more 
robust machine learning models with improved generalization 
capabilities. This may involve collecting larger, more diverse 
datasets, implementing advanced regularization techniques, and 
exploring hybrid modeling approaches that combine multiple 
machine learning algorithms. Additionally, investigating more 
sophisticated feature engineering methods and exploring other 
advanced regression techniques could provide deeper insights 
into the complex relationships governing 3D-printed composite 
materials. Ultimately, this research provides valuable insights for 
materials scientists, engineers, and researchers working in additive 
manufacturing, offering a data-driven approach to understanding 
and optimizing the 3D printing process for composite materials. 
The findings contribute to the ongoing advancement of 3D printing 
technology, supporting the development of more sophisticated, 
high-performance composite materials for various industrial 
applications.
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