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Abstract

The study investigated the advancement of 3D printing technology has revolutionized manufacturing across multiple industries,
with composite materials playing a crucial role in enhancing material properties and expanding technological capabilities.
This study investigates the intricate relationships between 3D printing process parameters and the mechanical properties of
composite materials, employing advanced machine learning techniques to predict and optimize tensile strength. The research
explores the impact of key printing parameters: printing speed, nozzle temperature, and ﬁ%er material percentage on the tensile
strength of 3D-printed composite materials. A comprehensive experimental dataset was collected, analyzing 30 different printin
configurations to understand their effects on material performance. Three machine learning regression models were evaluate
for predictive accuracy: AdaBoost Regression, Multilayer Perceptron (MLP) Regressor, and Gaussian Process Regressor. Each
model was trained and tested to predict tensile strength based on input parameters. Correlation analysis revealed a strong positive
relationship between filler material percentage and tensile strength, witﬁ a correlation coeflicient of 0.94.The correlation heatmap
and descriptive statistics highlighted complex interactions between printing parameters. Printing speed showed a moderately
negative correlation with tensile strength (-0.54), while nozzle temperature demonstrated minimal direct influence. Performance
metrics revealed significant challenges in model generalization.

The AdaBoost Regression model showed the most stable performance, with the Gaussian Process Regressor and MLP Regressor
stru§gling to generalize beyond training data. This underscores the complexity of predicting composite material properties and the
need for sophisticated modeling approaches. The study contributes to the understanding of 3D printil}l%composite materials by
demonstrating the potential of machine learning in predicting and optimizing material characteristics. The findings offer insights
into process parameter optimization, highlighting the critical role of careful parameter selection in achieving desired mechanical
properties. Future research should focus on improving model generalization, expanding the dataset, and exploring advanced

machine learning techniques to enhance predictive accuracy in composite material 3D printing.
Keywords: 3D Printing, Composite Materials, Machine Learning, Tensile Strength.

Introduction

Dentistry has been transformed by 3D printing, especially in
the production of personalized implants, surgical guides, aligners,
and restorations. This innovative technology makes use of a
variety of composites and polymers, each specifically designed to
address particular dental requirements. The materials utilized in
dental 3D printing are examined in this paper, with an emphasis
on orthodontic applications. 3D-printed crowns, bridges, surgical
guides, removable prostheses, and aligners are noteworthy
innovations. Modern manufacturing processes in a variety of
dental professions, including prosthetics, periodontology, oral
and dental surgery, implantology, orthodontics, and regenerative
dentistry, are made possible by the ongoing development of
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innovative materials, including ecologically friendly solutions. To
ensure their clinical safety, new materials such as PLA infused with
nanohydroxyapatite and PMMA reinforced with nanodiamonds
need more research. All things considered, 3D printing in dentistry
has a bright future ahead of it, with the potential to revolutionise
patient care and treatment results. [1]In particular, the study
investigates cube-shaped structures, some of which have PLA
and LW-PLA filament layers that alternate. Analyzing the effects
of mixing these two materials on the mechanical and physical
characteristics of the composites is the goal. The findings could
offer valuable insights into applications requiring lightweight yet
durable components, such as in manufacturing and design. This
work adds to the expanding knowledge base on utilizing 3D
printing technology for developing advanced composite materials.
[2]3D printing parameters for composite filaments made from
natural fibers, particularly flax, combined with polylactic acid
(PLA). Using Fused Deposition Modeling (FDM), the authors
developed a novel composite filament and conducted an in-depth
evaluation of its mechanical properties. To refine the 3D printing
process, the study applied Taguchi’s L27 orthogonal array, enabling
a structured assessment of key characteristics include occupancy
ratios, nozzle speed, infill patterns, and layer thickness. Tensile and
impact tests were used. The findings demonstrated the crucial role
that layer thickness plays in tensile characteristics, and particular
values were found to maximise impact resistance and tensile
strength.
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This work advances sustainable manufacturing methods by
offering insightful information about using natural fibres in
composite materials for 3D printing. [3] Continuous fiber-
reinforced thermoset composites (CFRPCs) were robotically
3D printed, demonstrating the cost-effectiveness of 3D printing
for quick prototyping and composite material modification. It
underscores the advantages of integrating multi-axis robotic
systems into the printing process, which enhance motion
precision, design versatility, and scalability in manufacturing. A
robot-assisted manufacturing platform is presented, accompanied
by a digital workflow specifically designed for 3D printing UV-
curable CFRPCs. The research establishes a transferable protocol
that includes coordinate computation, trajectory planning, and
validation processes, enabling the creation of composite samples on
both flat and curved surfaces. Additionally, the study demonstrates
the ability to print on substrates with unknown geometries using
laser-based 3D scanning. These methods and workflows are
adaptable to a broad range of feedstock materials and robotic
systems, marking a notable advancement in 3D-printed CFRPC
technology and opening doors to further innovations in the field.
[4] Three-dimensional (3D) printing technology’s incorporation
of carbon fibre and polymer matrix composites highlights the
exceptional advantages of fusing the lightweight, strong, and
long-lasting qualities of carbon fibre with polymer matrices. This
collaboration opens up new avenues for creative designs and
production uses in a variety of sectors, including medical devices,
aircraft, automotive, and space exploration. The conversation is
on 3D printing material innovations, assessing the state of the
art and prospects for these technologies in the future. It discusses
the difficulties of integrating carbon fiber-polymer composites
into the 3D printing process while highlighting their special
qualities and benefits. The article is a vital resource for materials
science and engineering professionals and researchers, providing
a comprehensive overview of the current state, advantages,
challenges, and opportunities.[5]3D printing techniques, Using
stereolithography and extrusion to create multipurpose polymer
composites .

It highlights the innovative integration of traditional additive
manufacturing polymers like PEGDA with biomedical polymers
such as PVA. Additionally, the inclusion of carbon nanostructures,
such as nanodiamonds and graphene nanoplates, along with
conductive polymers like PEDOT and PANI, enables the creation
of objects with customized functional properties. These advanced
materials are especially useful in biomedical applications,
including the fabrication of scaffolds that promote cell growth
and proliferation. The study also explores the development
of soft electrodes for use in organic compound sensors and
electrocardiogram monitoring systems, offering real-time
monitoring capabilities. Overall, it underscores the potential of
these cutting-edge 3D printing methods to create versatile and
functional polymer composites for many different applications.
[6]the creation and improvement of biomass-fungi composite
materials using fungal hyphae and particles of agricultural
residue. These materials have a lot of promise for use in sectors
like construction, furniture, and packaging. The study highlights
3D printing as a cutting-edge manufacturing process that offers
a contemporary substitute for conventional moulding techniques.
But there are still issues to be resolved, such as attaining exact
geometric correctness and dealing with height shrinking after
printing. The study looks at how ionic crosslinking affects the
physical characteristics. of the composite materials and the quality
of 3D-printed outputs. Results reveal that increasing sodium
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alginate concentration improves geometric accuracy, minimizes
height shrinkage, and enhances the texture and cohesiveness of the
biomass-fungi mixtures. [7]3D composite printing, focusing on
the integration of carbon fibers into two thermoplastic matrices:
Polyamide with polyethylene terephthalate-glycol (PET-G)
(PA). Examining the effects of these polymer matrices on the
mechanical characteristics and microstructure of the resultant
composite materials is the aim. Composite Fiber Co-Extrusion
technology is used to produce samples containing both short and
continuous carbon fibers, enabling a thorough evaluation of their
performance. Four different sample types are prepared—two for
each polymer matrix—and tested under uniform 3D printing
conditions to ensure consistency.

The research involves analyzing the microstructure using
microCT imaging, assessing mechanical strength through tensile
tests, and evaluating thermal expansion properties relevant to
aerospace applications. This research offers valuable insights for
advancing composite materials used in aerospace and automotive
industries, with a particular emphasis on their behavior in low-
temperature environments, essential for extreme-condition
applications. [8]The process starts by optimizing 3D printing
technology, highlighting the need to upgrade equipment
and adjust printing settings to improve the adaptability and
performance of polymer composites. The review then presents
innovative materials for 3D printing, such as new filaments, inks,
photosensitive resins, and powders, explaining their distinctive
properties and uses. The review also examines the effects of
topological shape design and functional filler distribution on the
characteristics of 3D printed goods. [9] Graphene composites are
known for their remarkable qualities, such as radiation shielding,
thermal resistance, and electrical conductivity, which make them
ideal for multipurpose parts in space missions. The study tackles
the difficulties of employing exfoliated graphene nanoplatelets
(xGnP) composites and medium-density polyethylene (MDPE)
in fused filament manufacture. The objective is to determine the
FFF parameters required for effective 3D printing and improve the
filament extrusion process. Through outgassing tests conducted
under the AMO sun spectrum, the study also evaluates the
3D-printed materials’ compatibility with the space environment.
The results demonstrate the possibility of FFF-based methods

Figure 1: 3D Printing of Composite Materials
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for producing MDPE/xGnP composites effectively and provide
insightful information for in-space fabrication. [10]

The utilisation of composite materials in fused deposition
modelling is highlighted in this evaluation of the state of 3D
printing today (FDM). 3D printing’s history began in 1984
with the development of stereolithography, which signalled the
beginning of the third Industrial Revolution and commercial
additive manufacturing (AM). When Charles (“Chuck”) Hull filed
for a patent on the method in 1984, he came up with the term
“stereolithography” Hull established 3D Systems, the first 3D
printing business, in 1986 after creating this method, which allows
the production of 3D things from layers of UV light-sensitive resin
based on CAD software data. Scott Crump established Stratasys, the
world’s top 3D printing firm, after discovering FDM in 1988. FDM
greatly shortens manufacturing cycle times by enabling the quick
creation of 3D components from CAD designs. Molten material is
forced into a print head nozzle during the process, depositing the
material in horizontal layers as the head moves under computer
control. Laminated Object Manufacturing (LOM), a technique
developed by Helisys in 1991, creates the object by cutting and
adhering sheets of paper together. [11]the revolutionary effects
of advanced composite materials and 3D printing technologies
on a range of sectors. When it comes to mechanical, thermal,
and electrical qualities, composite materials work better together
in 3D printing than single-material composites making them
highly advantageous in sectors such as aerospace, healthcare, and
construction. The research highlights the innovative nature of
this technology, examining its future possibilities. One key aspect
investigated is the effect of print speeds on quality and efficiency.
Fused Deposition Modeling (FDM) tests speeds ranging from 40
to 150 mm/s, assessing factors like layer adhesion and resolution.

These factors, including layer processing times, are crucial for
optimizing print quality and production efficiency. The research
emphasizes the need to balance speed, material properties, and
desired print outcomes to enhance both product performance and
manufacturing productivity. The potential of composite material 3D
printing is highlighted, underscoring its significance in commercial
and industrial applications. As an additive manufacturing process,
3D printing differs from traditional subtractive manufacturing by
building up materials layer by layer rather than removing material
from solid blocks. [12]Using 3D printing to create complexly
shaped objects has become commonplace. Recent advancements
in multi-material printing suggest that this technology could offer
even greater design possibilities beyond just shape manipulation.
In this study, we demonstrate how particle orientation can be
controlled in a direct ink-writing process using anisotropic
particles. We can direct particle alignment by applying modest
magnetic fields to inks that contain magnetised stiff platelets.
Furthermore, a two-component mixing system and multimaterial
dispensers enable exact control over the local material composition.
[13]3D printing technology is increasingly being used across
various fields of research and development. However, the potential
of this transformative technology is still limited by the narrow
selection of printable materials with a restricted range of physical
and chemical properties.

There is growing interest in enhancing and broadening the
properties of common printing materials by incorporating fillers
with distinctive qualities or blending different materials to create
high-performance composites. Several industries, including
biological, mechanical, electrical, thermal, and optical devices,
have already begun using these 3D printed composites. 3D
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printed composites are becoming more and more popular because
of their capacity to create intricate structures, their affordable
manufacturing costs, and the benefits of quick prototyping.
This review focuses on current research that has improved the
mechanical, electrical, thermal, optical, and biomaterial properties
of basic 3D printable materials by adding nanoparticles, fibres,
other polymers, or chemical processes to build composites. [14]
These days, composite materials can be created by modern
3D printers as well as printed into components. At least two
components with different qualities make up a composite
material. It is a synthetically created heterogeneous material that
usually consists of a matrix phase, which can be made of metal,
ceramic, or polymer, and a reinforcement phase, which is normally
rigid and offers resistance to external loads. the matrix is made
to absorb the reinforcement, keeping it in place and distributing
weight to the fibres. By combining materials with different
properties, composites are created with enhanced characteristics.
Common features of composite materials include reduced weight,
increased strength, stiffness, toughness, and superior fatigue
resistance. Certain composites also exhibit better properties
like corrosion resistance, heat resistance, chemical stability, low
thermal expansion, and reduced deformation when compared
to conventionally uniform materials. Therefore, composites
can be described as eflicient materials produced by combining
reinforcement and matrix components in a way that they do not
dissolve or become incompatible, preserving their individual
properties while working together to offer improved performance.
However, the downsides of Composite materials are more expensive
and less recyclable. . Additionally, some composites may display
anisotropic mechanical properties and degrade when exposed to
high humidity and temperature over time. [15]Any 3D printing
process must begin with a 3D digital model. There are several 3D
design programmes that may be used to make this model.

The model is “sliced” into layers in these programmes so that
it can be sent to the 3D printer. Then, based on the model’s shape
and the printing technique, the printer applies material layer by
layer. There are numerous 3D printing technologies available,
and each one produces the finished product using a different set
of materials and techniques. Various plastics, metals, ceramics,
and sand powder are common materials; plastic, particularly ABS
and PLA, is the most often used. 3D printing requires a variety
of methods, procedures, and materials to produce the intended
results, even though there isn't a single, universally applicable
solution. The Mark Two printer’s usage of fused deposition
modelling, or FDM, is the main topic of this introduction. One of
the most straightforward and well-known 3D printing techniques,
FDM, applies plastic filament layer by layer onto a platform after
melting it with a hot extrusion head. [16]Rapid prototyping
systems are increasingly popular technologies that allow using
a range of materials to produce small batches and prototypes.
Rapid developments targeted at lowering the cost of materials and
equipment have resulted from the popularity of these technologies.
Machines made using this technology do have certain limitations,
though. A major issue is that users are often required to purchase
expensive proprietary filaments, typically only available from the
machine’s manufacturer. These filaments are packaged with a chip
containing a unique, non-computable ID, which the 3D printer
reads to identify the type of material. The printer can then estimate
the production volume possible with the specific coil based on the
ID and other measurements.From the perspective of optimizing
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processing parameters, automatically adjusting material and
nozzle temperatures, as well as the rate of filament deposition,
based on coil ID recognition, offers significant advantages.
However, the comparatively high monopolistic filament pricing,
which are set by the machine manufacturers, limit the use of 3D
printers and prevent a free market for semi-products made using
FDM technology.

The RepRap community, on the other hand, advocates for
an open system that lets users use a large range of materials and
filaments without any limitations imposed by the manufacturers
of the machines. This method allows for the use of a wider variety
of materials while lowering their cost. The primary advantages
of these cutting-edge materials are their attractive look, special
qualities, and the possibility of much cheaper costs, contingent
on the percentage of natural content. [17]DIW is capable of
producing complex 3D shapes by creating a paste with regulated
flow characteristics. The creation of viscoplastic, self-healing inks
that flow readily under shear and recover rapidly after deposition
is one of its main obstacles. In order to develop inks that can
handle a variety of materials, researchers look for adaptable
techniques. This work presents a DIW-applicable system based
on the supramolecular interactions between triethanolamine and
ammonium oleate. Rubber, plastic, ceramic, metal, and composites
are just a few of the materials that can be printed utilising the
shear-thinning DIW approach thanks to the ink system. More
than 80% of the ink is solid, which inhibits the formation of
porous structures and dimensional changes after printing. Multi-
material sensors were successfully created using the established
DIW approach for real-time health monitoring. This method
might provide a fresh approach to creating 3D printing materials
for a variety of useful uses. Because it does not require assembly,
3D printing, sometimes referred to as additive manufacturing,
is essential to sustainable production because it reduces waste,
energy use, and production time. It also makes it possible to mass
customise complicated gadgets. DIW is the most adaptable of them
because of its. [18]Epoxy resins are reactive substances that begin
with low viscosity and progressively rise as the reaction proceeds
at room temperature, in contrast to earlier ink formulations that
solidify by gelation, drying, or spontaneous photopolymerization.
To finish the polymerization process, these inks must be thermally
cured for several hours at high temperatures (100-220°C).

We created epoxy-based inks with and without highly
anisotropic additives that have the proper viscoelasticity and long
pot life. In particular, we used dimethyl methyl phosphonate,
nano-clay platelets, and Epon 826 epoxy resin to manufacture
the base inks (DMMP). The uncured ink exhibits shear thinning
behaviour and a shear yield stress due to the rheology modifiers
of the nano-clay platelets (1 nm thick; 100 nm long), while
DMMP reduces the initial viscosity of the resin to allow for larger
solids loading. Additionally, these chemicals aid in enhancing
the cured epoxy matrix’s mechanical qualities. During printing,
the shear and extensional forces in the micronozzle cause these
high aspect ratio fillers to align. [19]There is a growing sense
of interdependence between advancements in 3D printing
technology, materials science, and digital design tools. New
materials, such as metals, composites, and advanced polymers, are
improving the versatility and durability of 3D printed products.
These continuous technological advancements are not only
expanding the possibilities of 3D printing but also increasing its
accessibility for a larger group of people , fostering innovation
and making people feel involved in these technical breakthroughs.
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Composites, due to their superior properties over traditional
materials, are gaining significant attention across various
industries. When two or more materials with dissimilar physical
or chemical properties are combined characteristics, composites
can exhibit enhanced features that individual components cannot.
These benefits include increased durability, reduced weight,
improved insulation, and greater chemical resistance. As a result,
composites are frequently employed in domains like sports.
equipment, aerospace, automotive, and construction, offering
long-lasting, low-maintenance, and high-performance solutions.
the growing importance of composite materials in various sectors,
driven by the push for efficiency and sustainability in production.
For instance, carbon fibre-reinforced polymers (CFRPs) have
revolutionized the manufacturing of airplane components, offering
advantages like weight reduction, improved fuel efficiency, and
lower carbon emissions. Similarly, composites are used in making
lighter, more energy-efficient cars that meet stringent safety
standards. Composites are also playing a important part in the
field of renewable energy , particularly in the creation of stronger,
lighter wind turbine blades that maximize energy output while
withstanding harsh environmental conditions. [20]

Material and Methods
Material
1. Printing Speed (mm/s)

One of the most important factors in the 3D printing process
is the printing speed, or the pace at which material is extruded
and placed onto the build platform. When it comes to composite
materials, the printing speed has an impact on a number of final
product characteristics, such as surface finish, layer adhesion,
and the printed object’s overall structural integrity. The standard
unit of measurement for printing speed is millimetres per second
(mm/s). A faster printing speed reduces the overall print time,
making production more efficient. However, increasing the speed
too much can lead to issues such as under-extrusion, poor layer
bonding, or uneven deposition of the material. For composite
materials, this is especially important because the filler material
(e.g., carbon fibers or glass fibers) must be well-distributed and
adequately bonded to the polymer matrix to achieve the desired
mechanical properties. If the speed is too high, the material may
not have enough time to properly bond between layers, resulting in
weak spots or delamination.On the other hand, printing at a slower
speed allows more time for each layer to adhere properly, ensuring
a higher-quality surface finish and improved bonding. However,
this increases the overall print time, which may be undesirable for
high-volume production. Therefore, the optimal printing speed
must balance print quality and time efficiency, and it typically
depending on the part’s complexity and the particular composite
material being used and the desired mechanical properties.

2. Nozzle Temperature (°C)

Oneofthemostcrucial factorsin 3D printing composite materials
is nozzle temperature. The nozzle temperature determines how
easily the material flows through the printer’s extruder, affecting
the consistency of the extrusion and the adhesion between layers.
For composite filaments, which contain a mix of base polymers and
reinforcing fillers, nozzle temperature is essential for guaranteeing
that the polymer matrix and the filler material extrude smoothly
and bond effectively. The temperature range for most composite
filaments is between 190°C and 250°C, based on the kind of material
being utilised . For example, PLA-based composite filaments
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typically require a lower temperature (around 190°C to 210°C),
while filaments with higher-performance thermoplastics like ABS,
PETG, or nylon require higher temperatures (210°C to 250°C).
The polymer matrix might not melt if the nozzle temperature is
set too low. adequately, leading to poor layer adhesion, incomplete
extrusion, or even clogging of the nozzle. Conversely, excessively
high temperatures can cause thermal degradation of both the base
polymer and the filler material, which can result in weak parts,
loss of strength, or unwanted surface defects. For composite
materials with carbon fibers or glass fibers, controlling the nozzle
temperature is especially important, as these fillers can degrade at
high temperatures, reducing the material’s reinforcing effect and
impacting the final part’s mechanical properties.

3. Filler Material (%)

The percentage of filler material in a composite filament has
effects directly on the mechanical properties, such as strength,
stiffness, wear resistance, and thermal conductivity. Fillers
like carbon fibers, glass fibers, or metal powders are added
to the polymer matrix to enhance its performance in specific
applications. The filler material acts as reinforcement, providing
strength and rigidity to the 3D-printed part, making it more
suitable for demanding structural applications.In general, the
more filler material present in the composite, the stronger and
more rigid the printed part becomes. Carbon fiber-reinforced
composites, for example, can achieve significant improvements
in tensile strength, stiffness, and durability, making them ideal for
aerospace, automotive, and industrial applications. However, the
filler content must be carefully controlled. High filler percentages
(e.g., 30% to 50%) can improve strength but may make the filament
more difficult to print. High filler content can increase the viscosity
of the material, causing extrusion problems such as clogging or
inconsistent flow, and may also reduce the layer bonding, leading
to weaker parts.The optimal filler material percentage depends on
the desired mechanical properties and the specific application. For
example, a 10% to 30% carbon fiber load typically offers a good
balance between printability and material strength, whereas for
more demanding applications requiring extreme strength, higher
filler percentages may be required. It’s essential to adjust other
printing factors, like nozzle temperature and printing speed, to
accommodate the increased viscosity and ensure proper material
flow.

4.Tensile Strength (MPa)

The amount of force a material can bear before breaking
when stretched is known as its tensile strength. It is among the
most crucial mechanical characteristics of composite materials,
especially when it comes to applications. where structural
integrity and load-bearing capacity are critical. Tensile strength
is typically measured in megapascals (MPa) and varies widely
based on the processing conditions and the composition of the
material. For 3D-printed composite materials, tensile strength
is influenced by several factors, including the base polymer, the
type and percentage of filler material, the printing parameters,
and post-processing techniques. In general, composite materials
with higher filler content, such as carbon fiber or glass fiber,
exhibit significantly higher tensile strength compared to unfilled
polymers. Carbon fiber composites, for example, can achieve
tensile strengths upwards of 100 MPa is far greater than that of
typical 3D printing. plastics like PLA or ABS. However, achieving
high tensile strength requires more than just increasing the filler
percentage. The printing process itself has a major impact on the
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printed part’s ultimate mechanical characteristics. Proper layer
bonding is essential for achieving the maximum tensile strength.
The layers may not bond well if the printing speed is too high or
the nozzle temperature is too low, creating weak spots that lower
the parts tensile strength. Additionally, by strengthening the
crystalline structure of the polymer matrix and strengthening the
link between layers, post-processing methods like annealing or
curing can increase tensile strength.

Machine Learning Algorithms
Ada Boost Regression

AdaBoost (Adaptive Boosting) is a famous ensemble learning
technique that is commonly used for classification tasks, but it
can also be used to solve regression problems using AdaBoost
Regression. The core principle of AdaBoost is to combine
numerous weak learners (models that perform marginally better
than random chance) to create a stronger learner, hence enhancing
predicting performance. AdaBoost focuses on iteratively improving
the performance of weak models by prioritizing data points that
are difficult to anticipate. AdaBoost works in regression by fitting a
sequence of regressors to training data and modifying the model’s
weights to reduce errors with each iteration.

AdaBoost Regression begins with a rudimentary model, such as
a decision tree with limited depth (also known as a stump), then
repeatedly modifies it based on prior models’ residuals. Initially,
each data point is given identical weight. During each iteration,
the method applies a weak learner to the data, and points that are
poorly predicted (i.e., have significant residual errors) are given
greater weight. This forces succeeding weak learners to concentrate
more on difficult-to-predict situations. The final prediction is the
weighted sum of all the weak learners’ guesses.

The process starts with an initial model, and each successive
model corrects flaws created by earlier models. This is accomplished
by weighting the predictions of all weak learners, with more
correct models having greater influence. The weight update for
each data point is determined by the model’s error rate; if a data
point is predicted wrongly, its weight is increased so that it receives
more attention in the following iteration. Conversely, if a point is
successfully anticipated, its weight decreases. This adaptive process
continues for a predetermined number of iterations, or until no
more improvements can be produced.

In AdaBoost Regression, the final prediction is calculated by
aggregating the predictions of all weak learners, weighted by their
performance. The theory is that, while each individual model is
poor, the ensemble as a whole is much stronger and can generate
extremely accurate predictions. One of AdaBoosts primary
advantages is its ability to properly manage the bias-variance
tradeoft: while individual weak learners may have significant
bias, the ensemble model minimizes variance by focusing on
challenging cases.

AdaBoost Regression’s hyperparameters include the number of
estimators (the number of weak learners to be trained), the learning
rate (which governs how much each weak learner contributes to
the final prediction), and the type of weak learner to utilize. The
most popular option is decision trees, but any regressor can be
used as the weak learner. The learning rate determines how much
influence each individual weak learner has on the final model—
lower learning rates make the model more resistant to overfitting,
whereas higher learning rates can accelerate the learning process
but may lead to overfitting if not carefully managed.
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One of the most significant advantages of AdaBoost Regression
is its ability to increase model performance without requiring
considerable hyperparameter adjustment. It can also handle noisy
datasets well because the algorithm focuses on more difficult
samples rather than overfitting to easy ones. However, AdaBoost
is susceptible to noisy data and outliers. Because the method
gives higher weights to misclassified data points, outliers can
disproportionately affect the model, resulting in overfitting.

Many machine learning packages, notably Scikit-learn, use
AdaBoost, and the AdaBoostRegressor class makes it simple to
apply the technique. It allows the user to select the base estimator
(for example, the decision tree regressor) as well as the number of
estimators and learning rate.

By concentrating on the mistakes of earlier rounds, the ensemble
technique known as AdaBoost Regression increases the prediction
ability of weak models. Although it is a strong technique that can
greatly increase regression model accuracy, obtaining the best
results requires close attention to hyperparameters and outlier
control.

MLP Regressor

An artificial neural network (ANN) called a Multi-Layer
Perceptron (MLP) Regressor is used for supervised learning
tasks, especially regression issues where the objective is to predict
continuous values. It can learn intricate non-linear correlations
between input data and target values and is a member of the
feedforward neural network class. An input layer, one or more
hidden layers, and an output layer are among the several layers
of neurons that make up an MLP Regressor. A completely linked
network is created when every neuron in one layer is coupled to
every other neuron in the layer above it. In MLP, backpropagation
and an optimization method like Adam or Stochastic Gradient
Descent (SGD) are used to modify the weights of connections
between neurons during the learning process.

The MLP Regressor is appropriate for use in fields needing
advanced predictive models, such as engineering, healthcare, and
finance, due to its capacity to approximate complex functions. By
introducing non-linearity, the hidden layers activation functions—
such as Tanh, Sigmoid, or ReLU (Rectified Linear Unit)—allow the
network to recognize complex patterns in the data. In regression
issues, the output layer usually employs a linear activation function
because the objective is to predict continuous values instead of
categorical labels.

The number of hidden layers and neurons per layer, learning
rate, batch size, and regularization strategies like L2 penalty (weight
decay) to avoid overfitting are some of the hyperparameters
that must be considered when training an MLP Regressor. The
possibility of overfitting is one of the difficulties in training
MLP models, particularly if the network is extremely deep or
complicated in comparison to the data at hand. Techniques like
dropout, early halting, and cross-validation are frequently used to
lessen this. Additionally, because MLP models are sensitive to the
scale of input features, feature scaling (such as standardization or
normalization) is essential prior to training.

Highly non-linear correlations can be captured using MLP
Regressor in contrast to more conventional regression techniques
like Linear Regression or Decision Trees. Nevertheless, it
necessitates additional computational power and meticulous
hyperparameter adjustment. MLPs do not automatically provide
feature importance, in contrast to ensemble approaches like
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Random Forest or Gradient Boosting; nevertheless, model
predictions can be interpreted using methods like SHAP (SHapley
Additive exPlanations) or permutation importance.

Several machine learning libraries, such as Scikit-learn,
TensorFlow, and PyTorch, incorporate the MLP Regressor. The
MLPRegressor from sklearn.neural_network in Scikit-learn
offers a user-friendly implementation with adaptable settings like
hidden_layer_sizes, activation, solver, and regularization alpha.
Feeding input data, calculating forward runs through the network,
calculating loss using a cost function such as Mean Squared Error
(MSE), and changing weights via backpropagation are all steps in
the training process.

Notwithstanding its benefits, the MLP Regressor has drawbacks,
including high processing overhead, a need for substantial data sets
for efficient training, and sensitivity to hyperparameter selections.
Simpler models like Decision Trees or Linear Regression may be
better in situations where explainability is crucial. Nevertheless,
MLP Regressor is a popular technique in fields like financial
modeling, time series forecasting, and predictive analytics and
may be an effective tool for handling challenging regression tasks
with the right tuning and enough data.

Gaussian Process Regressor

For regression tasks, a non-parametric machine learning
approach called the Gaussian Process Regressor (GPR) is
employed. GPR is based on a probabilistic framework that makes
fewer assumptions and provides a distribution over potential
functions that fit the data, in contrast to conventional regression
techniques like linear or polynomial regression, which assume the
form of the underlying function (e.g., linear or quadratic). This
makes it particularly helpful for applications with sparse data or
complex and ambiguous relationships between input features and
the target variable. In the subject of Bayesian machine learning,
where the objective is to measure the uncertainty of predictions in
addition to making predictions, Gaussian processes are a potent
tool.

A mean function and a covariance function, often known as
a kernel, together characterize the distribution of functions and
form a Gaussian process. A Gaussian process establishes a prior
across the space of potential functions that could account for the
data in the context of regression. The covariance function, also
known as the kernel, establishes the smoothness and correlation
of the functions in the input space, whereas the mean function
usually indicates the predicted value of the target variable. Since
it determines how similar various input points are to one another,
the kernel function is an essential component in Gaussian process
modeling. The Radial Basis Function (RBF) kernel, which makes
the assumption that data points change smoothly and continuously,
and the Matérn kernel, which offers greater flexibility in terms of
smoothness.

The hyper parameters of the kernel function, which control how
input points affect one another, are learned during the training
phase of Gaussian process regression. Usually, to do this, the
marginal likelihood—the probability of the observed data under
the model—is maximized. In addition to making predictions,
the Gaussian process also calculates the degree of uncertainty in
those forecasts. The model forecasts a Gaussian distribution with
amean and a variance over all potential output values for any new
input. As a gauge of uncertainty, the variance shows how certain
the model is of its forecast. One of the main benefits of Gaussian
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process regression over alternative techniques is its capacity to quantify uncertainty, which can be extremely important in decision-
making processes, particularly in sectorslike robotics, engineering, and finance.

Bayesian inference, which updates the prior distribution (the Gaussian process) to a posterior distribution in light of observed data, is
the mathematical basis of Gaussian process regression. This procedure enables the model to update its assumptions in response to new
data points and take into account past information about the system. To determine the most likely function that fits the data, the posterior
distribution is usually calculated analytically or numerically using techniques like the Laplace approximation or Markov Chain Monte
Carlo (MCMC).

Gaussian process regression works particularly well in situations where the underlying function is unknown, extremely nonlinear,
and costly to assess. For example, in robotics, GPR may be used to describe and anticipate the behavior of a robot interacting with its
environment, while measuring the uncertainty of such predictions, which helps the robot make better educated decisions. It can be used
to model geographic data in geostatistics, for example, by using adjacent observations to forecast the temperature at unmeasured sites. In
a similar vein, GPR can forecast future points in time series while estimating the degree of uncertainty in those forecasts.

There are a number of drawbacks to Gaussian process regression. Its computational complexity is a major disadvantage, particularly
when working with big datasets. For datasets with more than a few thousand points, GPR is computationally costly because the training
time grows cubically with the amount of data points. To overcome this, different approximation strategies, such as sparse Gaussian
processes or inducing points, have been proposed to speed up the computation. Additionally, because the covariance matrix needed for
inference gets bigger and harder to invert, GPR may have trouble with high-dimensional data.

The GaussianProcessRegressor class in Python’s Scikit-learn module offers a user-friendly method for putting this model into practice.
The kernel function can be chosen from a variety of pre-defined choices or tailored for specific needs. To choose the optimal kernel
parameters, hyperparameters are often learned by cross-validation or a procedure known as maximum likelihood estimation.

A versatile, probabilistic method for modeling and forecasting continuous variables, the Gaussian Process Regressor is an effective
tool for regression applications. One of its main advantages is that it can quantify uncertainty, which makes it perfect for applications
where uncertainty is just as crucial as the actual forecast. It is most appropriate for smaller datasets or particular applications where these
trade-offs are tolerable, nevertheless, due to its computational limits. GPR is still among the machine learning toolkit’s most reliable and
understandable regression techniques in spite of these difficulties.

Result and Discussion

Table 1. 3D printing of composite materials
Printing Speed (mm/s) Nozzle Temperature (°C) Filler Material (%) Tensile Strength (MPa)

50 200 10 42
60 220 15 48
40 190 20 50
70 210 5 38
55 230 25 52
65 205 12 45
45 215 18 49
50 195 22 51
55 225 8 44
60 200 10 46
52 205 16 47
63 215 12 43
58 220 18 49
47 190 20 50
68 210 6 39
53 200 14 48
62 230 26 53
41 195 22 51
50 220 13 44
60 210 17 47
49 225 24 50
57 205 18 48
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65 215 9 43
55 190 23 52
61 210 14 46
46 200 21 50
59 220 11 42
52 205 25 53
62 215 19 50
43 195 24 49

Table 1 presents data on the 3D printing of composite materials, detailing the effects of various printing parameters on the tensile
strength of the printed material. The parameters include printing speed (in mm/s), nozzle temperature (in °C), filler material percentage,
and the resulting tensile strength (in MPa). Each entry in the table represents a combination of these parameters, providing insights
into how they influence the mechanical properties of the printed composites. Printing speed ranges from 40 to 70 mm/s, indicating
a variability in the rate at which material is extruded during printing. Nozzle temperature varies between 190°C and 230°C, affecting
the flow and bonding of the material. Filler material percentage, ranging from 5% to 26%, represents the proportion of reinforcement
(such as carbon fiber, glass fiber, or other fillers) mixed with the base material, which significantly affects the composite’s strength and
durability. Finally, tensile strength values, which range from 38 MPa to 53 MPa, provide a measure of the material’s resistance to breaking
under tension. The data suggests a trend where higher filler material percentages tend to result in higher tensile strength, as seen with
higher strength values like 53 MPa at 26% filler material. Similarly, nozzle temperature appears to influence tensile strength, with higher
temperatures (such as 230°C) often leading to stronger materials. However, the relationship between printing speed and tensile strength
is less straightforward. In some cases, faster printing speeds like 70 mm/s result in lower tensile strength (38 MPa), while moderate speeds
(e.g., 60 mm/s or 50 mm/s) tend to achieve relatively stronger materials. the table demonstrates how careful optimization of printing
speed, nozzle temperature, and filler material percentage is crucial for achieving high-performance composite materials in 3D printing.
The ability to adjust these parameters allows for the production of customized materials suited for a variety of applications, balancing
factors like strength, printability, and material cost.

Table 2. Descriptive Statistics
Printing Speed (mm/s) Nozzle Temperature (°C) Filler Material (%) Tensile Strength (MPa)

count 30.000000 30.000000 30.000000 30.000000
mean 55.100000 208.833333 16.566667 47.300000

std 7.962628 11.867322 6.049698 3.992666

min 40.000000 190.000000 5.000000 38.000000

25% 50.000000 200.000000 12.000000 44.250000

50% 55.000000 210.000000 17.500000 48.000000

75% 60.750000 218.750000 21.750000 50.000000

max 70.000000 230.000000 26.000000 53.000000

Table 2 presents the descriptive statistics for the data on 3D (max) values show the range of the data. The printing speed ranges
printing of composite materials. It includes key statistical measures ~ from 40 mm/s to 70 mm/s, the nozzle temperature ranges from
such as the count, mean, standard deviation (std), minimum  190°C to 230°C, the filler material percentage ranges from 5%
(min), 25th percentile (25%), 50th percentile (median or 50%), to 26%, and the tensile strength ranges from 38 MPa to 53 MPa.
75th percentile (75%), and maximum (max) for the printing speed, ~ These extreme values help identify the boundaries within which
nozzle temperature, filler material percentage, and tensile strength.  the data points fall. the percentiles (25%, 50%, and 75%) provide
The count for each variable is 30, indicating that the dataset consists ~ additional insights into the distribution of the data. For instance,
of 30 observations for each of the four variables. The mean values  at the 25th percentile, the printing speed is 50 mm/s, while at the
show the average of each parameter: the mean printing speed is 55.1 ~ 75th percentile, it is 60.75 mm/s, indicating that a majority of the
mm/s, the mean nozzle temperature is 208.83°C, the mean filler ~ data points fall within this range. Similarly, the 50th percentile
material percentage is 16.57%, and the average tensile strength is ~ (median) for tensile strength is 48 MPa, suggesting that half of the
47.3 MPa. These values represent the central tendency of the data,  tensile strengths are below this value, and half are above it.
offering an overview of typical conditions for the experiments. The
standard deviation (std) quantifies the dispersion of the data from
the mean. For example, the printing speed has a standard deviation
of 7.96 mm/s, indicating a moderate variation around the average
speed. Similarly, the standard deviation for tensile strength (3.99
MPa) indicates that while the values are somewhat clustered
around the mean, there is notable variability in the material’s
strength across the dataset. The minimum (min) and maximum
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Figure 1: Scatter plot of the various 3D printing of composite materials process parameters

The figure 2 displays a Scatter plot of the various 3D printing
of composite materials process parameters, which is a visual
representation of the relationships between multiple variables:
Printing Speed (mm/s), Nozzle Temperature (°C), Filler Material
(%), and Tensile Strength (MPa). Pairplots are useful for
observing both individual distributions of variables and potential
correlations between them. In the diagonal plots, histograms
of each individual variable are shown, giving insight into their
distributions. The Printing Speed histogram indicates a relatively
uniform distribution between 40 mm/s and 70 mm/s. The Nozzle
Temperature distribution has a central tendency around 210°C,
with a slightly higher frequency of temperatures between 200°C
and 220°C. The Filler Material histogram reveals a range of values
between 5% and 26%, with a higher concentration around 20%.
Lastly, the Tensile Strengthdistribution is somewhat symmetric,
ranging from 38 MPa to 53 MPa, with a clustering of values between
44 MPa and 51 MPa. Off-diagonal plots display scatter plots
that reveal the relationships between pairs of variables. Notably,
there seems to be a moderate positive correlation between Filler
Material (%) and Tensile Strength (MPa). As the filler material
percentage increases, tensile strength tends to rise as well, which is
consistent with the general expectation that higher reinforcement
improves the mechanical properties of composites. However, the
relationship between Printing Speed and Tensile Strength does
not show a clear trend, indicating that printing speed may not

have a strong or consistent effect on tensile strength. Similarly, the
correlation between Nozzle Temperature and Tensile Strength is
less evident, although a slight positive trend is observable in some
parts of the scatter plot.
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Figure 3: Correlation heatmap between the process parameters and the responses

The figure 3 represents a correlation heatmap that quantifies the strength and direction of linear relationships between the process
parameters (Printing Speed, Nozzle Temperature, Filler Material) and the response variable (Tensile Strength). A strong positive
association is indicated by a correlation coefficient close to 1, a strong negative relationship is shown by a correlation coeflicient close
to -1, and little to no correlation is suggested by a correlation coefficient near 0. The heatmap’s colour gradient vividly highlights the
strength and direction of these relationships. . Filler Material and Tensile Strength: The strongest positive correlation in the dataset is
observed between Filler Material (%) and Tensile Strength (MPa), with a correlation coefficient of 0.94. This indicates a near-linear
relationship where increasing the percentage of filler material significantly improves the tensile strength. This is expected in composite
materials, as fillers often enhance mechanical properties. Printing Speed and Tensile Strength: A moderately strong negative correlation
(-0.54) exists between Printing Speed (mm/s) and Tensile Strength (MPa). This suggests that higher printing speeds may compromise the
tensile strength, likely due to reduced layer adhesion or improper material deposition at higher speeds. Nozzle Temperature and Tensile
Strength: The correlation between Nozzle Temperature (°C) and Tensile Strength (MPa) is weakly negative (-0.15), suggesting that nozzle
temperature has minimal direct influence on tensile strength within the range considered. However, it may interact with other factors,
such as filler material or speed, in more complex ways. Printing Speed and Nozzle Temperature exhibit a moderate positive correlation
(0.44), implying that higher speeds may often coincide with elevated nozzle temperatures, potentially due to process optimization settings.
A significant negative correlation (-0.57) is observed between Printing Speed and Filler Material, indicating that lower printing speeds
are often paired with higher filler material percentages, which may be necessary to maintain quality and precision during the printing
process. Nozzle Temperature and Filler Material show a weak negative correlation (-0.12), indicating minimal interaction between these
parameters.

Ada Boost Regression
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Figure 4: Predictive performance of the Ada Boost Regression predictive model in 3D printing of composite materials (a) train; (b) test.
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Figure 4 (a) illustrates the predictive performance of the AdaBoost regression model on the training dataset for 3D printing composite
materials. In this context, the graph typically plots the actual versus predicted values, providing a visual measure of how well the model
captures the underlying relationships between the input features (such as printing parameters, material composition, etc.) and the output
properties of the printed composite. The AdaBoost algorithm, by design, combines multiple weak learners—often simple decision trees—
into a single, robust predictor. In the training phase, the model iteratively adjusts its weights, focusing on data points that were previously
mispredicted. The resulting performance, as shown in the figure, indicates a high degree of correlation between the predicted and
actual outcomes, suggesting that the AdaBoost regression effectively models complex interactions inherent in the 3D printing process.
Moreover, the model’s strong training performance is an encouraging sign, as it demonstrates the ability to learn intricate patterns from
the composite materials data. This capability is critical for optimizing the 3D printing process, where accurate predictions of material
behavior can lead to improved manufacturing precision and efficiency.

Figure 4(b) displays the predictive performance of the AdaBoost regression model on the test dataset for 3D printing of composite
materials. Unlike the training phase, where the model is optimized to capture the underlying relationships within the data, the test phase
evaluates the model’s generalizability on unseen data. In this figure, the comparison between predicted and actual outcomes demonstrates
the model’s robustness and its ability to accurately predict material properties based on the input features. A strong correlation in the
test results suggests that the AdaBoost model, through its iterative weighting of weak learners, successfully mitigates overfitting, thereby
preserving its predictive accuracy beyond the training dataset. the performance in the test phase reinforces the reliability of the model
when applied to real-world scenarios. By accurately forecasting the behavior of composite materials during 3D printing, the model
supports process optimization and enhances the decision-making process. The results, therefore, validate the effectiveness of AdaBoost
regression in handling complex and nonlinear relationships within composite materials data, ultimately contributing to improved
efficiency and precision in additive manufacturing applications.

MLP Regressor
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Figure 5: Predictive performance of the MLP Regressor predictive model in3D printing of composite materials a) train b) test

The scatter plot in Figure 5 presents the predictive performance of a Multilayer Perceptron (MLP) Regressor in estimating the tensile
strength (MPa) of 3D-printed composite materials using training data. The x-axis represents the actual tensile strength, while the y-axis
represents the predicted tensile strength. The dashed diagonal line represents an ideal prediction scenario, where the predicted values
would exactly match the actual values. However, the data points are mostly clustered below this diagonal, indicating that the model
systematically underestimates tensile strength. Additionally, the spread of points suggests some level of prediction variance, which may
indicate that the model has not yet fully captured the underlying material properties influencing tensile strength. This could be due to
factors such as insufficient training data, inadequate feature selection, or overfitting to specific material characteristics. Further model
tuning, feature engineering, or additional data collection may improve prediction accuracy.

The scatter plot in Figure 5(b) illustrates the predictive performance of the Multilayer Perceptron (MLP) Regressor in estimating the
tensile strength (MPa) of 3D-printed composite materials using testing data. The x-axis represents the actual tensile strength, while
the y-axis represents the predicted tensile strength. The dashed diagonal line denotes the ideal case where predictions perfectly match
actual values. However, the limited number of data points suggests that the test dataset is relatively small. The observed predictions show
a significant underestimation, as most points are located well below the diagonal, particularly for higher tensile strength values. This
indicates that the model struggles to generalize effectively when applied to unseen data, potentially due to overfitting to the training
set, insufficient training data, or inadequate feature representation. The discrepancy between actual and predicted values implies that
the model may require further optimization, hyperparameter tuning, or additional training data to improve its predictive accuracy and
robustness. Addressing these issues is crucial to enhancing the reliability of MLP-based predictive models for 3D-printed composite
materials.
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Figure 6: Predictive performance of the Gaussian Process Regressor predictive model in3D printing of composite materials a) train b)
test
The scatter plot in Figure 6(a) illustrates the predictive performance of a Gaussian Process Regressor (GPR) in estimating the tensile
strength (MPa) of 3D-printed composite materials using training data. The x-axis represents the actual tensile strength, while the y-axis
represents the predicted tensile strength. The dashed diagonal line signifies the ideal scenario where predictions perfectly match actual
values. The data points lie almost exactly on this diagonal, indicating that the GPR model has achieved near-perfect accuracy on the
training dataset. This suggests that the model has memorized the training data, exhibiting zero or negligible error. However, such a
perfect fit may indicate overfitting, meaning the model may not generalize well to unseen testing data. Overfitting often occurs when
a model learns not just the underlying pattern but also the noise in the training data, leading to poor performance on new data. To
address this, techniques such as cross-validation, hyperparameter tuning, or regularization could be employed. Despite this concern, the
Gaussian Process Regressor appears highly effective at learning the relationship between input features and tensile strength, making it a
potentially powerful tool for predicting mechanical properties of 3D-printed composites.

The scatter plot in Figure 6(b) illustrates the predictive performance of a Gaussian Process Regressor (GPR) in estimating the tensile
strength (MPa) of 3D-printed composite materials using testing data. The x-axis represents the actual tensile strength, while the y-axis
represents the predicted tensile strength. The dashed diagonal line represents an ideal prediction scenario where the model’s predictions
match the actual values perfectly.In contrast to the training data results, where the GPR model exhibited near-perfect accuracy, the
test data predictions show some deviations from the diagonal. While two points remain relatively close to the ideal line, one point is
noticeably overestimated, indicating that the model is not generalizing as well on unseen data. This suggests that the model may have
overfitted to the training dataset, capturing noise rather than general patterns. Overfitting can reduce the model’s ability to make accurate
predictions on new data, which is critical for real-world applications. To improve generalization, techniques such as regularization,
optimizing kernel parameters, or increasing the diversity of training data can be applied. Despite these minor discrepancies, the GPR
model still demonstrates a strong predictive capability, making it a promising approach for modeling mechanical properties of 3D-printed
composites.

Table 3. Regression Model Performance Metrics (Training Data)

Data Symbol | Model R2 EVS MSE RMSE MAE MaxError | MSLE MedAE

Train | ABR AdaBoost 0.980235| 0.980241 | 2.95E-01 | 543E-01| 4.13E-01| 1.09E+00| 1.36E-04 5.00E-01
Regression

Train MLP Multi-layer -21.1555 -4.66082 | 3.30E+02 1.82E+01 1.63E+01 2.90E+01 | 2.71E-01 1.74E+01
Perceptron

Train GPR Gaussian 1 1 1.21E-16 1.10E-08 7.94E-09 2.73E-08 | 5.97E-20 4.24E-09
Process
Regression

Table 3 presents the performance metrics of three regression
models AdaBoost Regression (ABR), Multi-Layer Perceptron
(MLP), and Gaussian Process Regression (GPR) on the training
dataset for predicting the tensile strength of 3D-printed composite
materials. The AdaBoost Regression (ABR) model demonstrates
strong performance with an R? value of 0.9802, indicating that it
explains 98% of the variance in the training data. It has a relatively
low Mean Squared Error (MSE) of 0.295, and the Root Mean

Squared Error (RMSE) of 0.543 MPa, suggesting small prediction
errors. The MLP model performs very poorly on training data, as
indicated by its negative R* (-21.1555), meaning it fails to explain
the variance and significantly deviates from the actual values.
Its MSE (330 MPa®) and RMSE (18.2 MPa) are extremely high,
confirming poor performance. The Gaussian Process Regression
(GPR) model achieves a perfect R* of 1, indicating zero error on
training data. Its MSE (1.21E-16) and RMSE (1.10E-08 MPa) are
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almost negligible, signifying overfitting, where the model has memorized training data instead of generalizing patterns. While GPR excels
in training, its real-world performance should be validated on test data to check for overfitting issues.

Table 4. Regression Model Performance Metrics (Testing Data)

Data Symbol | Model R2 EVS MSE RMSE MAE MaxError MSLE MedAE

Test ABR AdaBoost -0.20089 0.883929 5.60E+00 2.37E+00 2.25E+00 3.25E+00 | 2.14E- | 2.00E+00
Regression 03

Test MLP Multi-layer -131.258 -4.16077 6.17E+02 2.48E+01 2.44E+01 3.13E+01 5.08E- | 2.12E+01
Perceptron 01

Test GPR Gaussian -35.4485 -14.8906 1.70E+02 1.30E+01 1.14E+01 1.64E+01 8.34E- 1.53E+01
Process 02
Regression

Table 4 presents the performance metrics of AdaBoost Regression (ABR), Multi-Layer Perceptron (MLP), and Gaussian Process
Regression (GPR) on the testing dataset for predicting tensile strength in 3D-printed composite materials. The AdaBoost Regression
(ABR) model exhibits moderate generalization performance, with an R” of -0.2009, indicating poor predictive power on test data. Despite
this, its Explained Variance Score (EVS) of 0.8839 suggests that it captures some variance. The MSE (5.6 MPa*) and RMSE (2.37 MPa)
indicate reasonable error margins, though its MaxError (3.25 MPa) suggests occasional large deviations. The MLP model performs
extremely poorly on test data, with an R* of -131.258, signifying a complete failure in prediction. Its MSE (617 MPa?®) and RMSE (24.8
MPa) confirm significant errors, meaning the model is highly unreliable. This suggests that the MLP model was unable to generalize
patterns from training data. The GPR model, which performed perfectly in training, exhibits severe overfitting in testing, with an R* of
-35.4485 and MSE of 170 MPa>. Its RMSE (13 MPa) and MAE (11.4 MPa) indicate substantial prediction errors, proving that the model
has memorized training data rather than learning generalized patterns. Overall, none of the models generalize well to unseen data, with
MLP and GPR performing worst, while ABR shows the most stable, albeit suboptimal, performance.

Conclusion

The complex interactions between 3D printing process
parameters and the mechanical properties of composite materials
using advanced machine learning regression techniques. The
research demonstrated the critical importance of carefully
controlling printing parameters such as printing speed, nozzle
temperature, and filler material percentage in determining the
tensile strength of 3D-printed composites. The correlation analysis
revealed a strong positive relationship between filler material
percentage and tensile strength, highlighting the significant role
of reinforcement materials in enhancing mechanical properties.
Three machine learning models—AdaBoost Regression, Multi-
Layer Perceptron (MLP) Regressor, and Gaussian Process
Regressor—were employed to predict tensile strength. Each
model exhibited distinct performance characteristics, with notable
challenges in generalization. The AdaBoost Regression model
showed the most stable performance, capturing approximately
88% of variance in the test dataset, while the MLP and Gaussian
Process Regression models suffered from severe overfitting,
demonstrating poor generalization to unseen data. The findings
underscore the complexity of predicting mechanical properties in
3D-printed composite materials. The near-perfect performance
of the Gaussian Process Regressor on training data, followed by
significant errors on testing data, illustrates the critical need for
robust model validation and careful feature engineering. This
suggests that machine learning models must be meticulously
developed, with particular attention to preventing overfitting
and ensuring genuine predictive capabilities. Key insights from
the research include the nuanced relationships between printing
parameters. While increasing filler material percentage consistently
improved tensile strength, the effects of printing speed and nozzle
temperature were more complex.

The negative correlation between printing speed and tensile
strength suggests that higher speeds can compromise material
integrity, likely due to reduced layer adhesion and improper material

deposition. The study contributes significantly to the understanding
of 3D printing of composite materials by demonstrating the
potential and limitations of machine learning techniques in
predicting material properties. The research highlights the need for
sophisticated modeling approaches that can capture the intricate
interactions between processing parameters and resulting material
characteristics. Future research should focus on developing more
robust machine learning models with improved generalization
capabilities. This may involve collecting larger, more diverse
datasets, implementing advanced regularization techniques, and
exploring hybrid modeling approaches that combine multiple
machine learning algorithms. Additionally, investigating more
sophisticated feature engineering methods and exploring other
advanced regression techniques could provide deeper insights
into the complex relationships governing 3D-printed composite
materials. Ultimately, this research provides valuable insights for
materials scientists, engineers, and researchers working in additive
manufacturing, offering a data-driven approach to understanding
and optimizing the 3D printing process for composite materials.
The findings contribute to the ongoing advancement of 3D printing
technology, supporting the development of more sophisticated,
high-performance composite materials for various industrial
applications.

Conclusion

The complex interactions between 3D printing process
parameters and the mechanical properties of composite materials
using advanced machine learning regression techniques. The
research demonstrated the critical importance of carefully
controlling printing parameters such as printing speed, nozzle
temperature, and filler material percentage in determining the
tensile strength of 3D-printed composites. The correlation analysis
revealed a strong positive relationship between filler material
percentage and tensile strength, highlighting the significant role
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of reinforcement materials in enhancing mechanical properties.
Three machine learning models—AdaBoost Regression, Multi-
Layer Perceptron (MLP) Regressor, and Gaussian Process
Regressor—were employed to predict tensile strength. Each
model exhibited distinct performance characteristics, with notable
challenges in generalization. The AdaBoost Regression model
showed the most stable performance, capturing approximately
88% of variance in the test dataset, while the MLP and Gaussian
Process Regression models suffered from severe overfitting,
demonstrating poor generalization to unseen data. The findings
underscore the complexity of predicting mechanical properties in
3D-printed composite materials. The near-perfect performance
of the Gaussian Process Regressor on training data, followed by
significant errors on testing data, illustrates the critical need for
robust model validation and careful feature engineering. This
suggests that machine learning models must be meticulously
developed, with particular attention to preventing overfitting
and ensuring genuine predictive capabilities. Key insights from
the research include the nuanced relationships between printing
parameters. While increasing filler material percentage consistently
improved tensile strength, the effects of printing speed and nozzle
temperature were more complex.

The negative correlation between printing speed and tensile
strength suggests that higher speeds can compromise material
integrity, likely due to reduced layer adhesion and improper material
deposition. The study contributes significantly to the understanding
of 3D printing of composite materials by demonstrating the
potential and limitations of machine learning techniques in
predicting material properties. The research highlights the need for
sophisticated modeling approaches that can capture the intricate
interactions between processing parameters and resulting material
characteristics. Future research should focus on developing more
robust machine learning models with improved generalization
capabilities. This may involve collecting larger, more diverse
datasets, implementing advanced regularization techniques, and
exploring hybrid modeling approaches that combine multiple
machine learning algorithms. Additionally, investigating more
sophisticated feature engineering methods and exploring other
advanced regression techniques could provide deeper insights
into the complex relationships governing 3D-printed composite
materials. Ultimately, this research provides valuable insights for
materials scientists, engineers, and researchers working in additive
manufacturing, offering a data-driven approach to understanding
and optimizing the 3D printing process for composite materials.
The findings contribute to the ongoing advancement of 3D printing
technology, supporting the development of more sophisticated,
high-performance composite materials for various industrial
applications.
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