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Abstract
Structured language interpretation—the transformation of short natural language inputs into machine readable representations—

is a foundational capability for modern AI-driven systems. Typical tasks include entity extraction, attribute identification, 
normalization, and schema-constrained output generation, enabling deterministic downstream processing.

Large Language Models (LLMs) have demonstrated strong performance on structured language tasks, benefiting from scale and 
broad contextual reasoning. However, these capabilities come with increased inference latency, token-dependent execution time, 
and variable operational cost when deployed at scale.

In latency-sensitive production environments, interpretation components are often required to operate within strict millisecond-
level latency budgets. Even moderate tail-latency inflation can violate endto-end service objectives and degrade system 
responsiveness. As a result, LLM-based approaches are frequently unsuitable for request paths that demand predictable millisecond-
scale execution.

This paper examines the use of Small Language Models (SLMs) for real-time structured language interpretation. By constraining 
model capacity, task scope, and output structure, SLMs enable bounded execution behavior with latency measured in tens to low 
hundreds of milliseconds, while preserving semantic accuracy for well-defined language tasks. 

We evaluate this approach under sustained production-like workloads using normalized latency and throughput metrics. 
Results demonstrate that SLM-based structured language interpretation can consistently operate within millisecond-level latency 
envelopes, making it practical for high-throughput, real-time systems.
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Introduction
 Natural language inputs have become a primary interaction 

mechanism for AI-powered systems across consumer and 
enterprise domains. These systems increasingly rely on the rapid 
transformation of freeform language into structured, machine-
consumable representations that support deterministic execution 
and reliable system behavior. Structured language interpretation 
plays a central role in this transformation. Tasks such as entity 
extraction, attribute identification, and schema-aligned output 
generation allow downstream components to reason over language 
inputs in a controlled and predictable manner. As system scale and 
traffic volume grow, the latency and cost characteristics of this 
interpretation layer become critical design considerations.

Large Language Models (LLMs) have demonstrated strong 
generalization across a wide range of language understanding 
tasks, including structured output generation. However, their 
inference characteristics pose challenges in millisecond-sensitive 
environments. Execution variability, token-dependent processing 
time, and cost scaling limit their suitability for request paths subject 
to tight latency budgets. Small Language Models (SLMs) represent 
an alternative design point when task boundaries are well defined. 
By limiting model capacity and tailoring architectures to specific 
interpretation objectives, SLMs can deliver consistent millisecond-
scale latency behavior appropriate for real-time systems operating 
at scale. This paper explores the design and evaluation of SLM-
based structured language interpretation in latency-sensitive 
environments. The focus is on understanding the system-level 
trade-offs and performance characteristics that emerge when 
language models are deployed directly within real-time execution 
paths.
2 Background

 Structured language interpretation is a foundational problem in 
natural language processing, encompassing tasks such as named 
entity recognition, slot filling, attribute extraction, and semantic 
normalization. Early approaches relied on rule-based pipelines and 
statistical sequence models, which offered predictable execution 
but required extensive manual engineering and exhibited limited 
robustness to linguistic variation.
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2.1 Neural Models for Structured Language 
Neural language models significantly advanced structured 

interpretation by learning distributed representations that 
generalize across syntactic and lexical forms. Transformer-based 
architectures, in particular, enabled direct prediction of schema-
constrained outputs from unstructured text, reducing reliance on 
handcrafted rules. 

2.2 Large Language Models
 Large Language Models (LLMs) extend transformer 

architectures through scale, allowing them to capture broad 
linguistic patterns and contextual dependencies. As a result, LLMs 
are often adopted as generalpurpose solutions for structured 
language tasks. However, LLM inference latency depends on input 
length, output structure, and internal reasoning behavior, leading 
to execution-time variability that complicates deployment in 
latency-sensitive systems. 

2.3 Small Language Models 
Small Language Models (SLMs) are designed with reduced parameter 

counts and narrowly defined objectives. By constraining output schemas 
and semantic scope, SLMs exhibit more stable inference behavior and 
predictable resource usage, making them suitable for real-time structured 
language tasks.

3 Problem Formulation 
Real-time systems impose strict constraints on execution 

latency, throughput, and operational stability. When structured 
language interpretation is executed synchronously, it must operate 
within these constraints while preserving sufficient semantic 
accuracy for downstream processing.

3.1 Latency Constraints
 End-to-end response budgets in production environments 

are typically bounded to hundreds of milliseconds. Language 
interpretation must therefore coexist with other system 
components within a tightly constrained latency envelope. 
Variability in interpretation latency directly impacts tail behavior 
at the system level, where even modest fluctuations can cause 
service-level objective violations under sustained load. 

3.2 Limitations of LLM-Based Approaches
 LLM-based solutions struggle to meet real-time requirements 

due to non-deterministic execution behavior and high inference 
cost. While average latency may appear acceptable, tail latency 
frequently exceeds allowable thresholds in production settings.

3.3 Problem Statement 
The problem addressed in this work is the design of a structured 

language interpretation system that satisfies real-time execution 
constraints without relying on large, general-purpose language 
models. The system must deliver predictable latency, stable 
throughput, and consistent output quality under high request rates. 
This motivates the use of Small Language Models aligned with 
narrowly scoped structured language tasks, enabling deterministic 
execution in large-scale, real-time systems.
4 Structured Language Interpretation Tasks 

Structured language interpretation refers to the transformation 
of short, free-form natural language inputs into structured 
representations that conform to predefined schemas. These 
representations enable deterministic downstream processing 

while retaining the semantic intent expressed in natural language.
 Unlike open-ended text generation, structured interpretation 

tasks are inherently bounded by taskspecific constraints, including 
fixed output schemas, limited semantic scope, and well-defined 
field semantics. These properties make the task amenable to 
optimization for real-time execution.

4.1 Task Scope and Assumptions
 The language inputs considered in this work are short-form 

utterances typically containing a small number of semantic intents. 
Inputs are assumed to be syntactically simple, limited in length, 
and focused on a narrow domain vocabulary. 

The task scope explicitly excludes long-form reasoning, multi-
turn discourse resolution, and openended generation. Instead, the 
focus is on extracting and normalizing structured signals that can 
be consumed synchronously by downstream systems.

4.2 Entity and Attribute Extraction
 A primary objective of structured language interpretation is 

the identification of explicit entities and attributes present in the 
input text. These may include named entities, categorical values, 
identifiers, or descriptive properties expressed implicitly or 
explicitly. 

The extraction task requires mapping surfacelevel language 
expressions to canonical field values. This process often involves 
resolving synonyms, normalizing lexical variants, and enforcing 
type consistency across extracted fields. 

Accurate extraction is essential not only for correctness but 
also for controlling execution complexity, as poorly scoped or 
ambiguous outputs can propagate variability into downstream 
processing stages.

4.3 Semantic Normalization
 Beyond extraction, structured language interpretation requires 

normalization of extracted values into consistent representations. 
Normalization ensures that semantically equivalent expressions 
are mapped to identical structured outputs, enabling reliable 
comparison and aggregation in downstream processing. 

Normalization may involve canonicalizing names, standardizing 
units or formats, and resolving ambiguous language into a 
single schema-compliant representation. This step is critical for 
maintaining deterministic behavior across semantically similar 
inputs.

4.4 Schema-Constrained Output Generation 
Structured language interpretation systems must produce 

outputs that strictly conform to predefined schemas. Each output 
field has a fixed type, allowable value range, and cardinality 
constraints that must be respected at inference time.

Schema-constrained generation reduces ambiguity and 
enables downstream systems to consume model outputs without 
additional validation or post processing. This constraint also limits 
output variability, contributing to predictable execution behavior 
in real-time environments.

4.5 Implications for Real-Time Execution
 The bounded nature of structured language interpretation tasks 

directly informs model selection and execution strategy. Limited 
output space, fixed schemas, and narrow semantic scope reduce 
the need for large, general-purpose models.
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 These characteristics motivate the use of Small Language 
Models optimized for low-latency execution. By aligning model 
capacity with task complexity, structured language interpretation 
can be performed synchronously while preserving stable taillatency 
behavior under sustained load. 
5 Real-Time System Design Flow 

This section describes the execution flow for structured language 
interpretation using Small Language Models (SLMs) deployed 
directly within synchronous, real-time request paths. The design 
prioritizes deterministic latency, bounded execution complexity, 
and strict schema compliance.

5.1 Design Objectives
 The system is designed around three primary objectives. First, 

inference latency must remain stable under sustained load, with 
minimal variance across requests. Second, execution behavior 
must be deterministic, avoiding recursive reasoning paths or 
dynamic control flow that can amplify tail latency. Third, outputs 
must strictly conform to predefined schemas to enable reliable 
downstream consumption.

5.2 Synchronous Execution Path
 Language inputs enter the system through a synchronous 

execution path where all processing occurs inline with the request 
lifecycle. An ingress guard enforces constraints on input length and 
format, ensuring compatibility with real-time execution budgets.

 Validated inputs are passed to a task-specific SLM optimized 
for structured language interpretation. The model performs entity 
extraction, attribute identification, and semantic normalization 
in a single bounded inference step, producing schema-aligned 
structured outputs.

5.3 Output Validation and Handoff
 Following inference, outputs are validated against schema 

constraints, including type correctness, field completeness, 
and cardinality limits. Invalid or partial outputs are handled 
through deterministic fallback logic rather than additional model 
invocations.

 Validated structured outputs are synchronously handed off to 
downstream components. The interpretation layer intentionally 
avoids additional reasoning or post-processing beyond schema 
enforcement, preserving predictable execution behavior.

5.4 Execution Flow Diagram
 Figure 1 illustrates the end-to-end execution flow for real-time 

structured language interpretation using SLMs. Control stages 
explicitly bound execution behavior within the synchronous 
request path. 

5.5 Latency Guardrails
 The execution path is intentionally linear and nonrecursive, 

ensuring that inference cost and execution depth remain bounded 
for every request. Control stages act as latency guardrails, 
preventing pathological inputs from propagating into expensive or 
unbounded execution paths.

5.6 Failure Containment
 Schema violations and partial outputs are handled through 

deterministic fallback logic rather than additional model 
invocations. This containment strategy preserves system stability 

and prevents tail-latency amplification under malformed or 
unexpected inputs. 
6 Real-Time Constraints

 Structured language interpretation in production systems 
operates under strict end-to-end latency budgets. These budgets 
are determined by the cumulative execution time across all 
components in the request lifecycle, including input validation, 
model inference, schema enforcement, and downstream handoff.

 In interactive applications, acceptable response times are 
typically bounded to sub-second envelopes. Within this constraint, 
structured language interpretation is allocated a limited portion 
of the overall latency budget. Variability introduced at this stage 
directly affects user-perceived responsiveness and downstream 
service objectives.

6.1 Tail Latency Considerations 
Average latency provides limited insight into production 

behavior; tail latency dominates reliability and user experience. 
Even infrequent slow executions can violate service objectives 
when systems operate under sustained load.

 Empirical observations show that large language model–based 
approaches exhibit substantial taillatency amplification driven by 
input-dependent token generation and reasoning depth. Under 
representative workloads, 95th percentile latency often extends 
into multi-second ranges, with further expansion at higher 
percentiles.

 By contrast, Small Language Models designed for bounded, 
schema-constrained tasks exhibit tighter latency distributions. 
Observed operating envelopes place SLM-based interpretation 
well below largemodel tails for comparable task complexity. These 
ranges reflect empirical behavior rather than hard guarantees and 
may vary by hardware, serving stack, and workload characteristics.
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6.2 Latency Budget Allocation 
Predictable system behavior requires the interpretation layer to 

consume a bounded and enforceable portion of the overall latency 
budget. This motivates explicit execution constraints, linear control 
flow, and avoidance of recursive or multi-pass inference strategies 
that can amplify tail latency.
7. Model Design Principles

 Meeting real-time constraints requires aligning model capacity 
with task complexity. Small Language Models achieve this 
alignment by restricting semantic scope and output structure, 
enabling more stable inference behavior across requests.

7.1 Task-Constrained Modeling
 SLMs used for structured language interpretation operate 

under narrowly defined output schemas with fixed field semantics 
enforced through prompt instructions and constrained decoding. 
This approach limits the effective output space and reduces 
decoding complexity, contributing to more predictable execution 
profiles without requiring task-specific model training. 

Unlike general-purpose language models, SLMs are not 
designed for open-ended reasoning or longform generation. 
Outputs are schema-compliant by construction, minimizing the 
need for corrective postprocessing or additional inference passes.

7.2 Deterministic Inference Behavior
 Model architectures and decoding strategies are selected to 

reduce variability across inputs. Constrained decoding, fixed 
output schemas, and bounded generation prevent rare but 
expensive executions from dominating upper-percentile latency 
behavior.

7.3 Measurement Disclosure
 To comply with confidentiality and proprietary constraints, 

absolute latency values are not disclosed. Reported latency 
characteristics reflect bounded ranges and relative trends that 
preserve comparative behavior across model classes without 
exposing system specific details.

7.4 Operational Stability 
Stable tail-latency behavior enables more accurate capacity 

planning and simplifies autoscaling decisions. Predictable p95 and 
p99 envelopes allow systems to operate closer to provisioned limits 
while reducing the risk of cascading performance degradation.
8  Experimental Setup

 This section describes the evaluation methodology used to study 
latency behavior and execution stability of Small Language Models 
applied to structured language interpretation tasks. The goal of the 
evaluation is to characterize relative behavior under sustained load 
rather than to establish absolute performance benchmarks.

8.1 System Environment
 Experiments are conducted in a production representative 

environment that reflects the realtime execution flow described 
in Section 5. The interpretation component is deployed inline 
with upstream validation and downstream consumers, ensuring 
that measured latency captures end-to-end behavior within the 
interpretation boundary. 

The system operates under steady-state traffic conditions with 
controlled concurrency. Admission control and autoscaling 

mechanisms are enabled to prevent artificial queue buildup 
from dominating latency measurements and to maintain stable 
operating conditions during observation windows.

8.2 Workload Characteristics 
The evaluation workload consists of short-form natural language 

inputs representative of structured interpretation tasks. Inputs 
are bounded in length and semantic scope and correspond to 
simple-to-medium complexity language operations such as entity 
extraction, normalization, and schema-constrained interpretation. 

Long-context reasoning, multi-turn interactions, and open-
ended generation workloads are intentionally excluded, as they 
fall outside the target operating domain of the proposed system.

8.3 Traffic Mix and Concurrency 
Traffic is generated using a heterogeneous mix of inputs to 

capture variation in entity density and attribute composition while 
preserving bounded execution behavior. Concurrency levels are 
selected to reflect sustained interactive usage rather than peak 
saturation or stress-testing scenarios.

 This design ensures that observed tail-latency behavior reflects 
model execution and control-flow characteristics rather than 
overload-induced artifacts.
9 Measurement Methodology

 9.1 Latency Metrics 
Latency is measured at the request level, capturing elapsed time 

from admission at the interpretation layer to delivery of schema-
validated structured output. Analysis focuses on tail behavior, with 
emphasis on the 95th and 99th percentile latency, which are most 
indicative of operational risk in real-time systems. 

Average latency is reported only as contextual information and 
is not used as a primary performance indicator, as it obscures the 
impact of infrequent but costly executions.

9.2 Instrumentation and Tracing
 Instrumentation is applied at well-defined stage boundaries, 

including input validation, model inference, schema enforcement, 
and output handoff. Lightweight tracing is used to attribute latency 
contributions without altering execution flow. 

Instrumentation overhead is measured independently and 
verified to be negligible relative to overall request latency.

9.3 Normalization and Reporting 
To comply with confidentiality and proprietary constraints, 

absolute latency values and hardwarespecific configurations are 
not disclosed. Results are reported using bounded operating ranges 
and normalized distributions that preserve relative behavior across 
model classes, traffic conditions, and execution stages.

 This reporting strategy supports comparative analysis of latency 
characteristics while avoiding disclosure of deployment-specific 
performance details.

9.4 Reproducibility Considerations
 While the evaluation reflects production-grade execution 

paths, hardware specifications and deployment parameters 
are intentionally abstracted. The methodology emphasizes 
repeatability of observed trends and behavioral characteristics 
rather than strict numerical reproducibility. 
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This framing aligns with the paper’s focus on system design 
trade-offs and operational behavior under real-world constraints.
10 Empirical Latency Characteristics 

This section summarizes empirical latency observations derived 
from production-like deployments and controlled evaluations. 
To comply with confidentiality and proprietary data protection 
requirements, absolute latency values, system configurations, and 
deployment-specific measurements are not disclosed. Instead, 
results are presented as bounded operating envelopes that preserve 
relative behavior across model classes without revealing sensitive 
implementation details. 

All observations correspond to simple to medium complexity 
natural language processing tasks, including structured extraction, 
normalization, and schema constrained interpretation. Workloads 
involving multi-step reasoning, long-context generation, or open-
ended synthesis are explicitly outside the scope of this analysis.

10.1 Large Model Latency Behavior
 Large language models (LLMs) exhibit pronounced tail-

latency amplification when applied to latency sensitive inference 
workloads. Observed latency is strongly influenced by input length, 
token generation dynamics, and internal reasoning behavior.

 Across evaluated conditions, LLM-based approaches 
consistently demonstrate tail latencies that exceed interactive 
service expectations. Upper percentile latency expands rapidly 
under sustained load, reflecting execution behavior that is input 
dependent and difficult to bound.

These envelopes indicate that large, generalpurpose language 
models are poorly aligned with applications that require tightly 
bounded tail-latency behavior under continuous traffic. 

10.2 Small Model Latency Behavior
 Small language models (SLMs) exhibit substantially tighter 

latency distributions when applied to structured language 
interpretation tasks. Reduced model capacity and schema-
constrained decoding contribute to more predictable execution 
behavior and improved stability at higher percentiles.

 Across evaluated environments, observed SLM latency is 
primarily influenced by the underlying hardware configuration. 
Hardware acceleration yields narrower tail-latency envelopes, 
while CPU-based execution exhibits broader but still bounded 
behavior for the task scope considered. 

10.3 Throughput Sensitivity
 SLM-based interpretation maintains stable taillatency behavior 

as concurrency increases, indicating that execution cost scales 
proportionally with input complexity. Observed degradation 
remains gradual, with no abrupt latency cliffs under steady-state 
load. 

In contrast, LLM-based approaches exhibit pronounced 
sensitivity to increased request rates. Variability in execution 
time leads to queue buildup, amplifying tail latency and reducing 
effective throughput. 

10.4 Execution Determinism
 Tracing shows that SLM execution remains linear and non-

recursive across evaluated inputs. Schema enforcement and 
bounded decoding prevent malformed inputs from triggering 
additional inference passes, contributing directly to stable p95 and 
p99 latency behavior.
11 Limitations

 The empirical analysis presented in this paper is intentionally 
scoped to protect confidential and proprietary system details. 
Absolute latency values, infrastructure configurations, and 
deployment-specific tuning parameters are therefore not disclosed. 
Latency characteristics are reported as bounded operating ranges 
that preserve relative behavior and comparative trends while 
avoiding disclosure of sensitive operational information. 

Evaluation is restricted to simple and medium complexity 
natural language processing tasks, including structured extraction, 
normalization, and schema-constrained interpretation. Workloads 
involving extended context windows, multi-step reasoning, 
tool-augmented execution, or complex generative synthesis 
are explicitly excluded and may exhibit materially different 
performance characteristics.

The analysis focuses on steady-state behavior under 
representative production-like load. Transient effects such as cold 
starts, autoscaling transitions, background resource contention, 
bursty traffic patterns, and adversarial inputs are not explicitly 
modeled. These factors may influence tail latency in practice and 
warrant separate investigation. 

Finally, the study does not include ablation analysis across 
alternative small-model architectures, inference runtimes, 
quantization strategies, or decoding constraints. While the 
observed trends are consistent across evaluated conditions, deeper 
comparative analysis remains an important area for future work.
12 Future Directions

 Future work will extend this analysis to a broader spectrum 
of language workloads, including multiintent queries, richer 
contextual inputs, and partial conversational state, while 
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maintaining bounded latency objectives appropriate for interactive 
systems.

 Ongoing efforts include systematic evaluation of alternative 
inference runtimes, hardware-aware optimization, memory-
efficient decoding strategies, and scheduling mechanisms aimed 
at further tightening tail-latency envelopes for small language 
models across diverse deployment environments. 

Additional directions include controlled ablation studies 
comparing multiple small language model architectures and 
decoding strategies, as well as limited evaluation on public 
structured language benchmarks to improve comparability 
without compromising proprietary system constraints.
13 Conclusion

 This paper examined empirical latency behavior of large and 
small language models in latency-sensitive language processing 
systems. The results demonstrate that model scale, task alignment, 
and hardware configuration play dominant roles in shaping tail-
latency behavior under sustained load.

 While large language models provide broad expressive 
capability and reasoning power, their latency distributions exhibit 
substantial variance at higher percentiles, making them poorly 
suited for workloads requiring tightly bounded response times. In 
contrast, small language models applied to well-defined structured 
tasks exhibit predictable execution behavior and stable tail-latency 
envelopes.

These findings reinforce the importance of task aware model 
selection and hardware-conscious system design. Rather than 
treating language models as interchangeable components, 
production systems benefit from aligning model capacity with task 
complexity and operational constraints.

 Collectively, this work highlights small language models 
as a practical foundation for real-time structured language 
interpretation in large-scale production environments and 
provides empirical guidance for system designers navigating 
latency-sensitive language workloads.
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