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Abstract

and variable operational cost when deployed at scale.

scale execution.

Production Al

Structured language interpretation—the transformation of short natural language inputs into machine readable representations—
is a foundational capability for modern Al-driven systems. Typical tasks include entity extraction, attribute identification,
normalization, and schema-constrained output generation, enabling deterministic downstream processing.

Large Language Models (LLMs) have demonstrated strong performance on structured language tasks, benefiting from scale and
broad contextual reasoning. However, these capabilities come with increased inference latency, token-dependent execution time,

In latency-sensitive production environments, interpretation components are often required to operate within strict millisecond-
level latency budgets. Even moderate tail-latency inflation can violate endto-end service objectives and degrade system
responsiveness. As a result, LLM-based approaches are frequently unsuitable for request paths that demand predictable millisecond-

This paper examines the use of Small Language Models (SLMs) for real-time structured language interpretation. By constraining
model capacity, task scope, and output structure, SLMs enable bounded execution behavior with latency measured in tens to low
hundreds of milliseconds, while preserving semantic accuracy for well-defined language tasks.

We evaluate this approach under sustained production-like workloads using normalized latency and throughput metrics.
Results demonstrate that SLM-based structured language interpretation can consistently operate within millisecond-level latency
envelopes, making it practical for high-throughput, real-time systems.
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Introduction

Natural language inputs have become a primary interaction
mechanism for Al-powered systems across consumer and
enterprise domains. These systems increasingly rely on the rapid
transformation of freeform language into structured, machine-
consumable representations that support deterministic execution
and reliable system behavior. Structured language interpretation
plays a central role in this transformation. Tasks such as entity
extraction, attribute identification, and schema-aligned output
generation allow downstream components to reason over language
inputs in a controlled and predictable manner. As system scale and
traffic volume grow, the latency and cost characteristics of this
interpretation layer become critical design considerations.
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Large Language Models (LLMs) have demonstrated strong
generalization across a wide range of language understanding
tasks, including structured output generation. However, their
inference characteristics pose challenges in millisecond-sensitive
environments. Execution variability, token-dependent processing
time, and cost scaling limit their suitability for request paths subject
to tight latency budgets. Small Language Models (SLMs) represent
an alternative design point when task boundaries are well defined.
By limiting model capacity and tailoring architectures to specific
interpretation objectives, SLMs can deliver consistent millisecond-
scale latency behavior appropriate for real-time systems operating
at scale. This paper explores the design and evaluation of SLM-
based structured language interpretation in latency-sensitive
environments. The focus is on understanding the system-level
trade-offs and performance characteristics that emerge when
language models are deployed directly within real-time execution
paths.

2 Background

Structured language interpretation is a foundational problem in
natural language processing, encompassing tasks such as named
entity recognition, slot filling, attribute extraction, and semantic
normalization. Early approaches relied on rule-based pipelines and
statistical sequence models, which offered predictable execution
but required extensive manual engineering and exhibited limited
robustness to linguistic variation.
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2.1 Neural Models for Structured Language

Neural language models significantly advanced structured
interpretation by learning distributed representations that
generalize across syntactic and lexical forms. Transformer-based
architectures, in particular, enabled direct prediction of schema-
constrained outputs from unstructured text, reducing reliance on
handcrafted rules.

2.2 Large Language Models

Large Language Models (LLMs) extend transformer
architectures through scale, allowing them to capture broad
linguistic patterns and contextual dependencies. As a result, LLMs
are often adopted as generalpurpose solutions for structured
language tasks. However, LLM inference latency depends on input
length, output structure, and internal reasoning behavior, leading
to execution-time variability that complicates deployment in
latency-sensitive systems.

2.3 Small Language Models

Small Language Models (SLMs) are designed with reduced parameter
counts and narrowly defined objectives. By constraining output schemas
and semantic scope, SLMs exhibit more stable inference behavior and
predictable resource usage, making them suitable for real-time structured
language tasks.

3 Problem Formulation

Real-time systems impose strict constraints on execution
latency, throughput, and operational stability. When structured
language interpretation is executed synchronously, it must operate
within these constraints while preserving sufficient semantic
accuracy for downstream processing.

3.1 Latency Constraints

End-to-end response budgets in production environments
are typically bounded to hundreds of milliseconds. Language
interpretation must therefore coexist with other system
components within a tightly constrained latency envelope.
Variability in interpretation latency directly impacts tail behavior
at the system level, where even modest fluctuations can cause
service-level objective violations under sustained load.

3.2 Limitations of LLM-Based Approaches

LLM-based solutions struggle to meet real-time requirements
due to non-deterministic execution behavior and high inference
cost. While average latency may appear acceptable, tail latency
frequently exceeds allowable thresholds in production settings.

3.3 Problem Statement

The problem addressed in this work is the design of a structured
language interpretation system that satisfies real-time execution
constraints without relying on large, general-purpose language
models. The system must deliver predictable latency, stable
throughput, and consistent output quality under high request rates.
This motivates the use of Small Language Models aligned with
narrowly scoped structured language tasks, enabling deterministic
execution in large-scale, real-time systems.

4 Structured Language Interpretation Tasks

Structured language interpretation refers to the transformation
of short, free-form natural language inputs into structured
representations that conform to predefined schemas. These
representations enable deterministic downstream processing
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while retaining the semantic intent expressed in natural language.

Unlike open-ended text generation, structured interpretation
tasks are inherently bounded by taskspecific constraints, including
fixed output schemas, limited semantic scope, and well-defined
field semantics. These properties make the task amenable to
optimization for real-time execution.

4.1 Task Scope and Assumptions

The language inputs considered in this work are short-form
utterances typically containing a small number of semantic intents.
Inputs are assumed to be syntactically simple, limited in length,
and focused on a narrow domain vocabulary.

The task scope explicitly excludes long-form reasoning, multi-
turn discourse resolution, and openended generation. Instead, the
focus is on extracting and normalizing structured signals that can
be consumed synchronously by downstream systems.

4.2 Entity and Attribute Extraction

A primary objective of structured language interpretation is
the identification of explicit entities and attributes present in the
input text. These may include named entities, categorical values,
identifiers, or descriptive properties expressed implicitly or
explicitly.

The extraction task requires mapping surfacelevel language
expressions to canonical field values. This process often involves
resolving synonyms, normalizing lexical variants, and enforcing
type consistency across extracted fields.

Accurate extraction is essential not only for correctness but
also for controlling execution complexity, as poorly scoped or
ambiguous outputs can propagate variability into downstream
processing stages.

4.3 Semantic Normalization

Beyond extraction, structured language interpretation requires
normalization of extracted values into consistent representations.
Normalization ensures that semantically equivalent expressions
are mapped to identical structured outputs, enabling reliable
comparison and aggregation in downstream processing.

Normalization may involve canonicalizing names, standardizing
units or formats, and resolving ambiguous language into a
single schema-compliant representation. This step is critical for
maintaining deterministic behavior across semantically similar
inputs.

4.4 Schema-Constrained Output Generation

Structured language interpretation systems must produce
outputs that strictly conform to predefined schemas. Each output
field has a fixed type, allowable value range, and cardinality
constraints that must be respected at inference time.

Schema-constrained generation reduces ambiguity and
enables downstream systems to consume model outputs without
additional validation or post processing. This constraint also limits
output variability, contributing to predictable execution behavior
in real-time environments.

4.5 Implications for Real-Time Execution

The bounded nature of structured language interpretation tasks
directly informs model selection and execution strategy. Limited
output space, fixed schemas, and narrow semantic scope reduce
the need for large, general-purpose models.
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These characteristics motivate the use of Small Language
Models optimized for low-latency execution. By aligning model
capacity with task complexity, structured language interpretation
can be performed synchronously while preserving stable taillatency
behavior under sustained load.

5 Real-Time System Design Flow

This section describes the execution flow for structured language
interpretation using Small Language Models (SLMs) deployed
directly within synchronous, real-time request paths. The design
prioritizes deterministic latency, bounded execution complexity,
and strict schema compliance.

5.1 Design Objectives

The system is designed around three primary objectives. First,
inference latency must remain stable under sustained load, with
minimal variance across requests. Second, execution behavior
must be deterministic, avoiding recursive reasoning paths or
dynamic control flow that can amplify tail latency. Third, outputs
must strictly conform to predefined schemas to enable reliable
downstream consumption.

5.2 Synchronous Execution Path

Language inputs enter the system through a synchronous
execution path where all processing occurs inline with the request
lifecycle. An ingress guard enforces constraints on input length and
format, ensuring compatibility with real-time execution budgets.

Validated inputs are passed to a task-specific SLM optimized
for structured language interpretation. The model performs entity
extraction, attribute identification, and semantic normalization
in a single bounded inference step, producing schema-aligned
structured outputs.

5.3 Output Validation and Handoff

Following inference, outputs are validated against schema
constraints, including type correctness, field completeness,
and cardinality limits. Invalid or partial outputs are handled
through deterministic fallback logic rather than additional model
invocations.

Validated structured outputs are synchronously handed off to
downstream components. The interpretation layer intentionally
avoids additional reasoning or post-processing beyond schema
enforcement, preserving predictable execution behavior.

5.4 Execution Flow Diagram

Figure 1 illustrates the end-to-end execution flow for real-time
structured language interpretation using SLMs. Control stages
explicitly bound execution behavior within the synchronous
request path.

5.5 Latency Guardrails

The execution path is intentionally linear and nonrecursive,
ensuring that inference cost and execution depth remain bounded
for every request. Control stages act as latency guardrails,
preventing pathological inputs from propagating into expensive or
unbounded execution paths.

5.6 Failure Containment

Schema violations and partial outputs are handled through
deterministic fallback logic rather than additional model
invocations. This containment strategy preserves system stability
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and prevents tail-latency amplification under malformed or
unexpected inputs.

6 Real-Time Constraints

Structured language interpretation in production systems
operates under strict end-to-end latency budgets. These budgets
are determined by the cumulative execution time across all
components in the request lifecycle, including input validation,
model inference, schema enforcement, and downstream handoft.

In interactive applications, acceptable response times are
typically bounded to sub-second envelopes. Within this constraint,
structured language interpretation is allocated a limited portion
of the overall latency budget. Variability introduced at this stage
directly affects user-perceived responsiveness and downstream
service objectives.

6.1 Tail Latency Considerations

Average latency provides limited insight into production
behavior; tail latency dominates reliability and user experience.
Even infrequent slow executions can violate service objectives
when systems operate under sustained load.

Empirical observations show that large language model-based
approaches exhibit substantial taillatency amplification driven by
input-dependent token generation and reasoning depth. Under
representative workloads, 95th percentile latency often extends
into multi-second ranges, with further expansion at higher
percentiles.

By contrast, Small Language Models designed for bounded,
schema-constrained tasks exhibit tighter latency distributions.
Observed operating envelopes place SLM-based interpretation
well below largemodel tails for comparable task complexity. These
ranges reflect empirical behavior rather than hard guarantees and
may vary by hardware, serving stack, and workload characteristics.

Citation: Perikala. K (2025). Structured Language Interpretation Using Small Language Models for Real-Time Systems. Journal of Data Science and Information Technology,

2(2), 1-6 doi: https://dx.doi.org/10.55124/jdit.v2i2.272

3



Sciforce

6.2 Latency Budget Allocation

Predictable system behavior requires the interpretation layer to
consume a bounded and enforceable portion of the overall latency
budget. This motivates explicit execution constraints, linear control
flow, and avoidance of recursive or multi-pass inference strategies
that can amplify tail latency.

7. Model Design Principles

Meeting real-time constraints requires aligning model capacity
with task complexity. Small Language Models achieve this
alignment by restricting semantic scope and output structure,
enabling more stable inference behavior across requests.

7.1 Task-Constrained Modeling

SLMs used for structured language interpretation operate
under narrowly defined output schemas with fixed field semantics
enforced through prompt instructions and constrained decoding.
This approach limits the effective output space and reduces
decoding complexity, contributing to more predictable execution
profiles without requiring task-specific model training.

Unlike general-purpose language models, SLMs are not
designed for open-ended reasoning or longform generation.
Outputs are schema-compliant by construction, minimizing the
need for corrective postprocessing or additional inference passes.

7.2 Deterministic Inference Behavior

Model architectures and decoding strategies are selected to
reduce variability across inputs. Constrained decoding, fixed
output schemas, and bounded generation prevent rare but
expensive executions from dominating upper-percentile latency
behavior.

7.3 Measurement Disclosure

To comply with confidentiality and proprietary constraints,
absolute latency values are not disclosed. Reported latency
characteristics reflect bounded ranges and relative trends that
preserve comparative behavior across model classes without
exposing system specific details.

7.4 Operational Stability

Stable tail-latency behavior enables more accurate capacity
planning and simplifies autoscaling decisions. Predictable p95 and
P99 envelopes allow systems to operate closer to provisioned limits
while reducing the risk of cascading performance degradation.

8 Experimental Setup

This section describes the evaluation methodology used to study
latency behavior and execution stability of Small Language Models
applied to structured language interpretation tasks. The goal of the
evaluation is to characterize relative behavior under sustained load
rather than to establish absolute performance benchmarks.

8.1 System Environment

Experiments are conducted in a production representative
environment that reflects the realtime execution flow described
in Section 5. The interpretation component is deployed inline
with upstream validation and downstream consumers, ensuring
that measured latency captures end-to-end behavior within the
interpretation boundary.

The system operates under steady-state traffic conditions with
controlled concurrency. Admission control and autoscaling
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mechanisms are enabled to prevent artificial queue buildup
from dominating latency measurements and to maintain stable
operating conditions during observation windows.

8.2 Workload Characteristics

The evaluation workload consists of short-form natural language
inputs representative of structured interpretation tasks. Inputs
are bounded in length and semantic scope and correspond to
simple-to-medium complexity language operations such as entity
extraction, normalization, and schema-constrained interpretation.

Long-context reasoning, multi-turn interactions, and open-
ended generation workloads are intentionally excluded, as they
fall outside the target operating domain of the proposed system.

8.3 Traffic Mix and Concurrency

Traffic is generated using a heterogeneous mix of inputs to
capture variation in entity density and attribute composition while
preserving bounded execution behavior. Concurrency levels are
selected to reflect sustained interactive usage rather than peak
saturation or stress-testing scenarios.

This design ensures that observed tail-latency behavior reflects
model execution and control-flow characteristics rather than
overload-induced artifacts.

9 Measurement Methodology
9.1 Latency Metrics

Latency is measured at the request level, capturing elapsed time
from admission at the interpretation layer to delivery of schema-
validated structured output. Analysis focuses on tail behavior, with
emphasis on the 95th and 99th percentile latency, which are most
indicative of operational risk in real-time systems.

Average latency is reported only as contextual information and
is not used as a primary performance indicator, as it obscures the
impact of infrequent but costly executions.

9.2 Instrumentation and Tracing

Instrumentation is applied at well-defined stage boundaries,
including input validation, model inference, schema enforcement,
and output handoff. Lightweight tracing is used to attribute latency
contributions without altering execution flow.

Instrumentation overhead is measured independently and
verified to be negligible relative to overall request latency.

9.3 Normalization and Reporting

To comply with confidentiality and proprietary constraints,
absolute latency values and hardwarespecific configurations are
not disclosed. Results are reported using bounded operating ranges
and normalized distributions that preserve relative behavior across
model classes, traffic conditions, and execution stages.

This reporting strategy supports comparative analysis of latency
characteristics while avoiding disclosure of deployment-specific
performance details.

9.4 Reproducibility Considerations

While the evaluation reflects production-grade execution
paths, hardware specifications and deployment parameters
are intentionally abstracted. The methodology emphasizes
repeatability of observed trends and behavioral characteristics
rather than strict numerical reproducibility.
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This framing aligns with the paper’s focus on system design
trade-offs and operational behavior under real-world constraints.

10 Empirical Latency Characteristics

This section summarizes empirical latency observations derived
from production-like deployments and controlled evaluations.
To comply with confidentiality and proprietary data protection
requirements, absolute latency values, system configurations, and
deployment-specific measurements are not disclosed. Instead,
results are presented as bounded operating envelopes that preserve
relative behavior across model classes without revealing sensitive
implementation details.

All observations correspond to simple to medium complexity
natural language processing tasks, including structured extraction,
normalization, and schema constrained interpretation. Workloads
involving multi-step reasoning, long-context generation, or open-
ended synthesis are explicitly outside the scope of this analysis.

10.1 Large Model Latency Behavior

Large language models (LLMs) exhibit pronounced tail-
latency amplification when applied to latency sensitive inference
workloads. Observed latency is strongly influenced by input length,
token generation dynamics, and internal reasoning behavior.

Across evaluated conditions, LLM-based approaches
consistently demonstrate tail latencies that exceed interactive
service expectations. Upper percentile latency expands rapidly
under sustained load, reflecting execution behavior that is input
dependent and difficult to bound.

Table 1:
language models under sustained load. Values repre-
sent indicative operating ranges.

Observed tail-latency envelopes for large

Metric P95 Range P99 Range

3-5 seconds

Inference latency 2-3 seconds

These envelopes indicate that large, generalpurpose language
models are poorly aligned with applications that require tightly
bounded tail-latency behavior under continuous traffic.

10.2 Small Model Latency Behavior

Small language models (SLMs) exhibit substantially tighter
latency distributions when applied to structured language
interpretation tasks. Reduced model capacity and schema-
constrained decoding contribute to more predictable execution
behavior and improved stability at higher percentiles.

Across evaluated environments, observed SLM latency is
primarily influenced by the underlying hardware configuration.
Hardware acceleration yields narrower tail-latency envelopes,
while CPU-based execution exhibits broader but still bounded
behavior for the task scope considered.

10.3 Throughput Sensitivity

SLM-based interpretation maintains stable taillatency behavior
as concurrency increases, indicating that execution cost scales
proportionally with input complexity. Observed degradation
remains gradual, with no abrupt latency cliffs under steady-state
load.
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Table 2: Observed tail-latency envelopes for small lan-
guage models under representative hardware configu-
rations. Values represent bounded operating ranges.

Hardware P95 Range Notes
Configuration
GPU-bazed inference Tens to low Narrower
hundreds of ms  tail
envelope
CPU-based inference Hundreds of ms Reference
configura-

tion

In contrast, LLM-based approaches exhibit pronounced
sensitivity to increased request rates. Variability in execution
time leads to queue buildup, amplifying tail latency and reducing
effective throughput.

10.4 Execution Determinism

Tracing shows that SLM execution remains linear and non-
recursive across evaluated inputs. Schema enforcement and
bounded decoding prevent malformed inputs from triggering
additional inference passes, contributing directly to stable p95 and
P99 latency behavior.

11 Limitations

The empirical analysis presented in this paper is intentionally
scoped to protect confidential and proprietary system details.
Absolute latency values, infrastructure configurations, and
deployment-specific tuning parameters are therefore not disclosed.
Latency characteristics are reported as bounded operating ranges
that preserve relative behavior and comparative trends while
avoiding disclosure of sensitive operational information.

Evaluation is restricted to simple and medium complexity
natural language processing tasks, including structured extraction,
normalization, and schema-constrained interpretation. Workloads
involving extended context windows, multi-step reasoning,
tool-augmented execution, or complex generative synthesis
are explicitly excluded and may exhibit materially different
performance characteristics.

The analysis focuses on steady-state behavior under
representative production-like load. Transient effects such as cold
starts, autoscaling transitions, background resource contention,
bursty traffic patterns, and adversarial inputs are not explicitly
modeled. These factors may influence tail latency in practice and
warrant separate investigation.

Finally, the study does not include ablation analysis across
alternative small-model architectures, inference runtimes,
quantization strategies, or decoding constraints. While the
observed trends are consistent across evaluated conditions, deeper
comparative analysis remains an important area for future work.

12 Future Directions

Future work will extend this analysis to a broader spectrum
of language workloads, including multiintent queries, richer
contextual inputs, and partial conversational state, while
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maintaining bounded latency objectives appropriate for interactive
systems.

Ongoing efforts include systematic evaluation of alternative
inference runtimes, hardware-aware optimization, memory-
efficient decoding strategies, and scheduling mechanisms aimed
at further tightening tail-latency envelopes for small language
models across diverse deployment environments.

Additional directions include controlled ablation studies
comparing multiple small language model architectures and
decoding strategies, as well as limited evaluation on public
structured language benchmarks to improve comparability
without compromising proprietary system constraints.

13 Conclusion

This paper examined empirical latency behavior of large and
small language models in latency-sensitive language processing
systems. The results demonstrate that model scale, task alignment,
and hardware configuration play dominant roles in shaping tail-
latency behavior under sustained load.

While large language models provide broad expressive
capability and reasoning power, their latency distributions exhibit
substantial variance at higher percentiles, making them poorly
suited for workloads requiring tightly bounded response times. In
contrast, small language models applied to well-defined structured
tasks exhibit predictable execution behavior and stable tail-latency
envelopes.

These findings reinforce the importance of task aware model
selection and hardware-conscious system design. Rather than
treating language models as interchangeable components,
production systems benefit from aligning model capacity with task
complexity and operational constraints.

Collectively, this work highlights small language models
as a practical foundation for real-time structured language
interpretation in large-scale production environments and
provides empirical guidance for system designers navigating
latency-sensitive language workloads.
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